Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025164PMC
http://dx.doi.org/10.1371/journal.pcbi.1005074DOI Listing

Publication Analysis

Top Keywords

gene-trap insertional
12
insertional mutagenesis
12
antiviral targets
12
host genes
12
host
8
host cellular
8
virus-host interactome
8
druggable antiviral
8
genes essential
8
viral replication
8

Similar Publications

Article Synopsis
  • - The ABC transporter gene family produces proteins that create channels in cell membranes and utilize ATP to transport substances across cells, playing a key role in processes like toxin removal and drug resistance in cancer stem cells.
  • - In this study, researchers explored the expression of ABC transporters within the Drosophila testis and identified six transporters that showed tissue-specific expression patterns, but not exclusively in stem cells as initially expected.
  • - A comparison between the expression data from their own tests and the Fly Cell Atlas revealed a weak correlation, emphasizing the importance of using multiple techniques when studying gene expression.
View Article and Find Full Text PDF

HMG (high mobility group) proteins are a diverse family of nonhistone chromosomal proteins that interact with DNA and a wide range of transcriptional regulators to regulate the structural architecture of DNA. HMGXB4 (also known as HMG2L1) is an HMG protein family member that contains a single HMG box domain. Our previous studies have demonstrated that HMGXB4 suppresses smooth muscle differentiation and exacerbates endotoxemia by promoting a systemic inflammatory response in mice.

View Article and Find Full Text PDF

Mutations in cysteine and glycine-rich protein 3 (CSRP3)/muscle LIM protein (MLP), a key regulator of striated muscle function, have been linked to hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in patients. However, the roles of CSRP3 in heart development and regeneration are not completely understood. In this study, we characterized a novel zebrafish gene-trap line, gSAIzGFFM218A, which harbors an insertion in the csrp3 genomic locus, heterozygous fish served as a csrp3 expression reporter line and homozygous fish served as a csrp3 mutant line.

View Article and Find Full Text PDF

LncRNA-based control affects cardiac pathophysiologies like myocardial infarction, coronary artery disease, hypertrophy, and myotonic muscular dystrophy. This study used a gene-break transposon (GBT) to screen zebrafish () for insertional mutagenesis. We identified three insertional mutants where the GBT captured a cardiac gene.

View Article and Find Full Text PDF

Background/aim: Anticancer drug resistance is an important issue in cancer treatment. Multiple genes are thought to be involved in resistance to anticancer drugs; however, this is still not fully understood. This study aimed to identify the genes involved in irinotecan resistance and their functional characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!