Single-walled carbon nanotubes (SWNTs) are used in the near infrared (NIR)-mediated thermal ablation of tumor cells because they efficiently convert absorbed NIR light into heat. Despite the therapeutic potential of SWNTs, there have been no published studies that directly quantify how many SWNTs need be associated with a cell to achieve a desired efficiency of killing, or what is the most efficient subcellular location of SWNTs for killing cells. Herein we measured dose response curves for the efficiency of killing correlated to the measured amounts of folate-targeted SWNTs that were either on the surface or within the vacuolar compartment of normal rat kidney cells. Folate-targeted SWNTs on the cell surface were measured after different concentrations of SWNTs in medium were incubated with cells for 30 min at 4 °C. Folate-targeted SWNTs within the vacuolar compartments were measured after cells were incubated with different concentrations of SWNTs in medium for 6 h at 37 °C. It was observed that a SWNT load of ∼13 pg/cell when internalized was sufficient to kill 90% of the cells under standardized conditions of NIR light irradiation. When ∼3.5 pg/cell of SWNTs were internalized within the endosomal/lysosomal compartments, ∼50% of the cells were killed, but when ∼3.5 pg/cell of SWNTs were confined to the cell surface only ∼5% of the cells were killed under the same NIR irradiation conditions. The SWNT subcellular locations were verified using Raman imaging of SWNTs merged with fluorescence images of known subcellular markers. To our knowledge, this is the first time that SWNT amounts at known subcellular locations have been correlated with a dose-normalized efficacy of thermal ablation and the results support the idea that SWNTs confined to the plasma membrane are not as effective in NIR-mediated cell killing as an equivalent amount of SWNTs when internalized within the endosomal/lysosomal vesicles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049696 | PMC |
http://dx.doi.org/10.1088/0957-4484/27/42/425102 | DOI Listing |
Small
December 2024
Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada.
Flexible sensors have garnered significant interest for their potential to monitor human activities and provide valuable feedback for healthcare purposes. Single-walled carbon nanotubes (SWNTs) are promising materials for these applications but suffer from issues of poor purity and solubility. Dispersing SWNTs with conjugated polymers (CPs) enhances solution processability, yet the polymer sidechains can insulate the SWNTs, limiting the sensor's operating voltage.
View Article and Find Full Text PDFAdv Funct Mater
October 2024
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
Traditional deep fluorescence imaging has primarily focused on red-shifting imaging wavelengths into the near-infrared (NIR) windows or implementation of multi-photon excitation approaches. Here, we combine the advantages of NIR and multiphoton imaging by developing a dual-infrared two-photon microscope to enable high-resolution deep imaging in biological tissues. We first computationally identify that photon absorption, as opposed to scattering, is the primary contributor to signal attenuation.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
This study explores the hydrogen generation potential via water-splitting reactions under UV-vis radiation by using a synergistic assembly of ZnO nanoparticles integrated with MoS, single-walled carbon nanotubes (SWNTs), and crystalline silicon nanowires (SiNWs) to create the MoS-SiNWs-SWNTs@ZnONPs nanocomposites. A comparative analysis of MoS synthesized through chemical and physical exfoliation methods revealed that the chemically exfoliated MoS exhibited superior performance, thereby being selected for all subsequent measurements. The nanostructured materials demonstrated exceptional surface characteristics, with specific surface areas exceeding 300 m g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan.
Sustainable energy societies demand rechargeable batteries using ubiquitous-material electrodes of geopolitical-risk-free elements. We aim to develop low-overpotential oxygen-evolution-reaction (OER) catalysts that suppress carbon corrosion of gas-diffusion electrodes (GDEs) to realize two-electrode rechargeable Zn-air batteries (r-ZABs). Herein, single-walled-carbon-nanotube (SWNT) thin films are used as a scaffold for a benchmark OER catalyst, doping-free NiFe-layered double hydroxide (NiFeLDHs), operating in r-ZABs using alkali aqueous electrolytes.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
Triple negative breast cancer (TNBC) seriously endangers women's life and health due to its high invasion and mortality. Reactive oxygen species (ROS) mediated tumor cells apoptosis is considered an effective anticancer approach. Herein, we designed a natural active triple helix β-Glucan (BFP) wrapped single walled carbon nanotubes (SWNTs)-loaded doxorubicin (DOX) self-assembly (BSD) via generating excess ROS to induce oxidative stress damage for TNBC therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!