In situ proximity ligation assay (PLA) is a novel, revolutionary technique that can be employed to visualize protein complexes in fixed cells and tissues. This approach enables demonstration of close (i.e., up to 40 nm) proximity between any two proteins of interest that can be detected using a pair of specific antibodies that have been raised in distinct species. Primary antibodies bound to the target proteins are subsequently recognized by two PLA probes, i.e., secondary antibodies conjugated with oligonucleotides that anneal when brought into close proximity in the presence of two connector oligonucleotides and a DNA ligase forming a circular DNA molecule. In the next step, the resulting circular DNA is amplified by a rolling circle polymerase. Finally, fluorescent oligonucleotide probes hybridize to complementary fragments of the amplified DNA molecule, forming a typical, spot-like pattern of PLA signal that reflects subcellular localization of protein complexes. Here we describe the use of in situ PLA in adherent cultures of mammalian cells in order to visualize interactions between Golgi-resident, functionally related glycosyltransferases and nucleotide sugar transporters relevant to N-glycan biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6463-5_11DOI Listing

Publication Analysis

Top Keywords

protein complexes
12
situ proximity
8
proximity ligation
8
ligation assay
8
assay pla
8
close proximity
8
circular dna
8
dna molecule
8
pla
5
pla analysis
4

Similar Publications

Introduction: Prostate cancer (PCa) is the commonest urologic cancer worldwide and the leading cause of male cancer deaths in Nigeria. In Nigeria, orchidectomy remains the primary androgen deprivation therapy. Dihydrotestosterone (DHT) is the active prostatic androgen, but its relationship with PCa severity has not been extensively studied in Africa.

View Article and Find Full Text PDF

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: Iron deficiency (ID) is the most common nutritional deficiency among patients undergoing major surgery. Treatment of ID is straightforward, however implementing a comprehensive anemia management strategy within clinical routines is complex. Recently, reticulocyte hemoglobin content (Ret-He) has been evaluated as an early marker for ID diagnosis.

View Article and Find Full Text PDF

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!