Delivery of small interfering RNA (siRNA) is recently gaining tremendous attention for the treatment of ovarian cancer. The present study investigated the potential of different liposomal formulations composed of (2,3-dioleoyloxy-propyl)-trimethylammonium (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) encapsulating siRNA (hydration method) for their ability to knockdown luciferase (Luc) activity in human ovarian cancer SKOV-3 cells. Fluorescence single particle tracking (fSPT) and fluorescence correlation spectroscopy (FCS) in human-undiluted ascites fluid obtained from a peritoneal carcinomatosis patient revealed that cationic hydra-lipoplexes (HYDRA-LPXs) and HYDRA-LPXs decorated with stable DSPE-PEG (DSPE HYDRA-LPXs) showed high stability during at least 24 h. HYDRA-LPXs decorated with sheddable C8 and C16 PEG-Ceramides (Cer HYDRA-LPXs) resulted in rapid and premature release of siRNA already in the first hours. Despite their role in preventing aggregation in vivo, liposomes decorated with stable PEG residues resulted in a poor transfection compared to the ones decorated with sheddable PEG residues in reduced serum conditions. Yet, the transfection efficiency of both Cer HYDRA-LPXs significantly decreased following 1 h of incubation in ascites fluid due to a drastic drop in the cellular uptake, while DSPE HYDRA-LPXs are still taken up by cells, but too stable to induce efficient gene silencing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13346-016-0329-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!