The controlled catalytic functionalization of alkanes via the activation of C-H bonds is a significant challenge. Although C-H activation by transition metal catalysts is often suggested to operate via intermediate σ-alkane complexes, such transient species are difficult to observe due to their instability in solution. This instability may be controlled by use of solid/gas synthetic techniques that enable the isolation of single-crystals of well-defined σ-alkane complexes. Here we show that, using this unique platform, selective alkane C-H activation occurs, as probed by H/D exchange using D, and that five different isotopomers/isotopologues of the σ-alkane complex result, as characterized by single-crystal neutron diffraction studies for three examples. Low-energy fluxional processes associated with the σ-alkane ligand are identified using variable-temperature X-ray diffraction, solid-state NMR spectroscopy, and periodic DFT calculations. These observations connect σ-alkane complexes with their C-H activated products, and demonstrate that alkane-ligand mobility, and selective C-H activation, are possible when these processes occur in the constrained environment of the solid-state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b07968DOI Listing

Publication Analysis

Top Keywords

c-h activation
16
σ-alkane complexes
12
selective c-h
8
h/d exchange
8
activation
5
c-h
5
σ-alkane
5
activation molecular
4
molecular rhodium
4
rhodium sigma-alkane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!