Objective: The purpose of this study is to compare the reliability of SW velocity measurements of two different ultrasound systems and their correlation with the tangent traction modulus in a non-static tendon strain model.
Materials And Methods: A bovine tendon was fixed in a custom-made stretching device. Force was applied increasing from 0 up to 18 Newton. During each strain state the tangent traction modulus was determined by the stretcher device, and SW velocity (m/s) measurements using a Siemens S3000 and a Supersonic Aixplorer US machine were done for shear modulus (kPa) calculation.
Results: A strong significant positive correlation was found between SW velocity assessed by the two ultrasound systems and the tangent traction modulus (r = 0.827-0.954, p < 0.001), yet all SW velocity-based calculations underestimated the reference tissue tangent modulus. Mean difference of SW velocities with the S3000 was 0.44 ± 0.3 m/s (p = 0.002) and with the Aixplorer 0.25 ± 0.3 m/s (p = 0.034). Mean difference of SW velocity between the two US-systems was 0.37 ± 0.3 m/s (p = 0.012).
Conclusion: In conclusion, SW velocities are highly dependent on mechanical forces in the tendon tissue, but for controlled mechanical loads appear to yield reproducible and comparable measurements using different US systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00256-016-2470-z | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Epidemiological studies indicate that the involvement of the immune system in the pathogenesis of infections associated with chronic obstructive pulmonary disease (COPD), asthma, and interstitial lung disease (ILD) remains unclear. This study aims to assess the potential causal link between infections associated with COPD, asthma, or ILD and immune system function. We conducted a two-sample Mendelian randomization analysis using publicly available genome-wide association study (GWAS) datasets.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Radiology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China.
Background: Glioma is the most common malignancy in the central nervous system. Even with optimal therapies, glioblastoma (the most aggressive form of glioma) is incurable, with only 26.5% of patients having a 2-year survival rate.
View Article and Find Full Text PDFUltrasound Obstet Gynecol
January 2025
Institute of Population Health, Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, UK.
Pharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!