Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005376PMC
http://dx.doi.org/10.3389/fnint.2016.00030DOI Listing

Publication Analysis

Top Keywords

area lip
24
population activity
12
activity area
12
saccade
9
lateral intraparietal
8
intraparietal area
8
lip
8
moving targets
8
target well
8
saccade vector
8

Similar Publications

Excessive gingival display (EGD), commonly known as a gummy smile (GS), is a cosmetic concern that involves exposing a significant area of gum tissue during a smile, rendering it unaesthetic. Gingival exposure greater than 3 mm is deemed aesthetically displeasing and often necessitates treatment to mask the gummy smile. The causes of EGD are multifactorial, including altered passive eruption (APE), hypermobile upper lip (HUL), short lip length, increased vertical maxillary component, gingival hyperplasia, dentoalveolar extrusion, and more.

View Article and Find Full Text PDF

Accuracy Evaluation of a Three-Dimensional Face Reconstruction Model Based on the Hifi3D Face Model and Clinical Two-Dimensional Images.

Bioengineering (Basel)

November 2024

Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, China.

Three-dimensional (3D) facial models have been increasingly applied in orthodontics, orthognathic surgery, and various medical fields. This study proposed an approach to reconstructing 3D facial models from standard orthodontic frontal and lateral images, providing an efficient way to expand 3D databases. A total of 23 participants (average age 20.

View Article and Find Full Text PDF

Objective: To evaluate the frequency of tooth anomalies (TA) in the deciduous and permanent dentition of patients with nonsyndromic orofacial clefts (NSOC), both inside and outside the cleft area.

Methods: The following databases were searched for the relevant literature: Cochrane, OVID, SciELO, Embase, Livivo, PubMed, Scopus, and Web of Science. The risk of bias was analyzed using the Joanna Briggs Institute.

View Article and Find Full Text PDF

Objective: To study the biomechanical changes induced by differences in perioral force in patients with missing anterior maxillary teeth at rest via finite element analysis (FEA).

Methods: Using conical beam CT (CBCT) images of a healthy person, models of the complete maxillary anterior dental region (Model A) and maxillary anterior dental region with a missing left maxillary central incisor (Model B) were constructed. The labial and palatine alveolar bone and tooth surface of the bilateral incisor and cusp regions were selected as the application sites, the resting perioral force was applied perpendicular to the tissue surface, and the changes in maxillary stress and displacement after the perioral force was simulated were analyzed.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!