Novel Antibacterial Agents: An Emergent Need to Win the Battle Against Infections.

Mini Rev Med Chem

Faculdade de Farmácia, Universidade Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa. Portugal.

Published: October 2017

Background: Multiple strategies have been recommended for prevention and control of antibacterial resistance. Solutions will need to be found soon if we are not to run the serious risk of losing the ability to treat bacterial infections, especially the ones arising from multi-resistant strains. Deep knowledge of the resistance mechanisms followed by novel therapeutic drugs and vaccines are needed. A consolidated, multidisciplinary and regulated strategy is required by this challenge.

Objective: This review will be focused on new strategies to control infections. Among strategies to tackle antibiotic resistance that have been under investigation, are the use of antimicrobial peptides, phage therapy and phage enzymes, therapeutic antibodies, quorum sensing inhibitors and, finally, the antibacterial nanomedicines. Although all of the approaches seem to be effective, and at least one of them has been in use for relatively a long time (phage therapy), antibacterial nanomedicines show the most diverse range of different approaches regarding potential translation to clinics.

Results & Conclusion: Several advances have been made but a great effort is still mandatory in order to reach feasible, effective and marketable novel antimicrobial products.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557516666160907151454DOI Listing

Publication Analysis

Top Keywords

phage therapy
8
antibacterial nanomedicines
8
novel antibacterial
4
antibacterial agents
4
agents emergent
4
emergent win
4
win battle
4
battle infections
4
infections background
4
background multiple
4

Similar Publications

Phage Therapy as a Rescue Treatment for Recurrent Bentall Infection.

Viruses

January 2025

Service des Maladies Infectieuses et Tropicales, Hôpital Pitié Salpêtrière, APHP Sorbonne Université, 75013 Paris, France.

Phage therapy is experiencing renewed interest, particularly for antibiotic-resistant infections, and may also be useful for difficult-to-treat cases where surgery to remove foreign infected material is deemed too risky. We report a case of recurrent endocarditis with Bentall infection treated successfully with a combination of antibiotics and phages.

View Article and Find Full Text PDF

Phage M198 and Its Therapeutic Potential.

Viruses

January 2025

Laboratory of Molecular Biology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 0160 Tbilisi, Georgia.

The rapid worldwide spread of antibiotic resistance is quickly becoming an increasingly concerning problem for human healthcare. Non-antibiotic antibacterial agents are in high demand for many Gram-negative bacterial pathogens, including . -targeting phages are among the most promising alternative therapy options.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

Selected Mechanisms of Action of Bacteriophages in Bacterial Infections in Animals.

Viruses

January 2025

Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.

Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic cells and interact with the host immune system. Due to their complex protein structure, phages can also directly or indirectly modulate immune processes, including innate immunity, by modulating phagocytosis and cytokine reactions, as well as acquired immunity, by producing antibodies and activating effector cells.

View Article and Find Full Text PDF

is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!