Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics.

ChemSusChem

Energy Research Institute at, Nanyang Technological University (ERIAN), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Avenue, Singapore, 637553, Singapore.

Published: September 2016

Although halide perovskites are able to deliver high power conversion efficiencies, their ambient stability still remains an obstacle for commercialization. Thus, promoting the ambient stability of perovskites has become a key research focus. In this review, we highlight the sources of instability in conventional 3 D perovskites, including water intercalation, ion migration, and thermal decomposition. Recently, the multidimensional perovskites approach has become one of the most promising strategies to enhance the stability of perovskites. As compared to pure 2 D perovskites, multidimensional perovskites typically possess more ideal band gaps, better charge transport, and lower exciton binding energy, which are essential for photovoltaic applications. The larger organic cations in multidimensional perovskites could also be more chemically stable at higher temperatures than the commonly used methylammonium cation. By combining 3 D and 2 D perovskites to form multidimensional perovskites, halide perovskite photovoltaics can attain both high efficiency and increased stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201601025DOI Listing

Publication Analysis

Top Keywords

multidimensional perovskites
20
perovskites
10
perovskite photovoltaics
8
ambient stability
8
stability perovskites
8
2 d perovskites
8
multidimensional
5
perovskites mixed
4
mixed cation
4
cation approach
4

Similar Publications

Neuron-inspired CsPbBr/PDMS nanospheres for multi-dimensional sensing and interactive displays.

Light Sci Appl

January 2025

National and Local United Engineering Laboratory of Flat Panel Display Technology, College of Physics and Information Engineering, Fuzhou University, 350108, Fuzhou, China.

Multifunctional materials have attracted tremendous attention in intelligent and interactive devices. However, achieving multi-dimensional sensing capabilities with the same perovskite quantum dot (PQD) material is still in its infancy, with some considering it currently challenging and even unattainable. Drawing inspiration from neurons, a novel multifunctional CsPbBr/PDMS nanosphere is devised to sense humidity, temperature, and pressure simultaneously with unique interactive responses.

View Article and Find Full Text PDF

Rare Earth Complex-Based Functional Materials: From Molecular Design and Performance Regulation to Unique Applications.

Acc Chem Res

January 2025

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

ConspectusRare earth (RE) elements, due to their unique electronic structures, exhibit excellent optical, electrical, and magnetic properties and thus have found widespread applications in the fields of electronics, optics, and biomedicine. A significant advancement in the use of RE elements is the formation of RE complexes. RE complexes, created by the coordination of RE ions with organic ligands, not only offer high molecular design flexibility but also incorporate features such as a broad absorption band and efficient energy transfer of organic ligands.

View Article and Find Full Text PDF

Terahertz (THz) polarization detection facilitates the capture of multidimensional data, including intensity, phase, and polarization state, with broad applicability in high-resolution imaging, communication, and remote sensing. However, conventional semiconductor materials are limited by energy band limitations, rendering them unsuitable for THz detection. Overcoming this challenge, the realization of high-stability, room-temperature polarization-sensitive THz photodetectors (PDs) leveraging the thermoelectric effect of Cs(FAMA)Pb(IBr) (CsFAMA)/metasurfaces is presented.

View Article and Find Full Text PDF

Tunable terahertz (THz) metasurfaces based on optical control are crucial in high-speed communication, nondestructive testing, and imaging. However, realizing independent optical tunability of multiple functions in the THz band remains challenging due to limitations in control materials. Here, we experimentally demonstrate a novel THz metasurface that employs two control materials combined with an electric-field-coupled inductor capacitor microstructure to achieve all-optical independent modulations of amplitude and frequency.

View Article and Find Full Text PDF

Soft X-ray imaging is a powerful tool to explore the structure of cells, probe material with nanometer resolution, and investigate the energetic phenomena in the universe. Conventional soft X-ray image sensors are by and large Si-based charge coupled devices that suffer from low frame rates, complex fabrication processes, mechanical inflexibility, and required cooling below -60 °C. Here, a soft X-ray photodiode is reported based on low-cost metal halide perovskite with comparable performance to commercial Si-based device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!