Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present, perhaps for the first time, a stochastic search algorithm in quantitative photoacoustic tomography (QPAT) for a one-step recovery of the optical absorption map from time-resolved photoacoustic signals. Such a direct recovery is free of the numerical inaccuracies inherent in conventional two-step approaches that depend on an accurate estimation of the absorbed energy distribution. The absorption profile parameterized as a vector stochastic process is additively updated over time recursions so as to drive the measurement-prediction misfit to a zero-mean white noise. The derivative-free additive update is a welcome departure from the conventional gradient-based methods requiring evaluation of Jacobians at every recursion. The quantitative accuracy of the recovered absorption map from both numerical and experimental data is good with an overall error of less than 10%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.41.004202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!