Polyol Synthesis of Ti-VO Nanoparticles and Their Use as Electrochromic Films.

Inorg Chem

Université de Bordeaux, CNRS, ICMCB , 87 Avenue du Dr. Albert Schweitzer, 33608 F-Pessac Cedex, France.

Published: October 2016

Herein, the successful synthesis of Ti-doped vanadium pentoxide from a polyol process is reported. A high Ti concentration (up to 8.5 mol % of the total metallic content) can be inserted in vanadium oxide thanks to the synthesis route leading to nanometric crystallites. X-ray diffraction patterns were refined showing the insertion of the titanium ions inside the free pentacoordinated sites in opposition to the vanadium square pyramidal sites. This crystal organization was shown in good agreement with the ab initio positioning performed from valence calculation. The nanoparticles, NPs, of Ti-doped VO compounds were characterized as electrochromic materials. Films elaborated from a dip-coating process from oxide particle suspensions exhibited three distinct colorations during the redox cycling in lithium-based electrolyte. These colors were associated with three distinct oxidation states for the vanadium ions: +III (blue), +IV (green), and +V (orange). The morphology of the films was shown to drastically impact the electrochromic performances in terms of electrochemical capacity and stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.6b01662DOI Listing

Publication Analysis

Top Keywords

three distinct
8
polyol synthesis
4
synthesis ti-vo
4
ti-vo nanoparticles
4
nanoparticles electrochromic
4
electrochromic films
4
films successful
4
successful synthesis
4
synthesis ti-doped
4
vanadium
4

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.

View Article and Find Full Text PDF

Exploring Bidirectional Causal Relationships between Antibody-Mediated Immune Responses to Infectious Agents and Systemic Lupus Erythematosus through Mendelian Randomization and Meta-Analyses.

Microb Pathog

January 2025

Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu Province, China. Electronic address:

Background: Previous investigations into the causal relationship between infections and systemic lupus erythematosus (SLE) have yielded controversial results. This study delves into the bidirectional causal relationships between various infectious agents and SLE, employing two-sample Mendelian randomization (MR) from an immunological perspective.

Methods: Utilizing genome-wide association study (GWAS) data for 46 antibody-mediated immune responses (AMIRs) to 13 pathogens and three distinct SLE datasets, we employed Bayesian Weighted MR (BWMR) and inverse variance weighted (IVW) methods to ascertain causal links, supplemented by meta-analysis to resolve inconsistencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!