Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report measurements of electron densities, n_{e}, and temperatures, T_{e}, in a magnetized expanding hydrogen plasma performed using Thomson scattering. The effects of applying an axial magnetic field and changing the background pressure in the plasma vessel on n_{e} and T_{e} along the expansion axis are reported. Magnetic field strengths (B field) up to 170 mT were applied, which are one order of magnitude larger than previously reported. The main effect of the applied B field is the plasma confinement, which leads to higher n_{e}. At B fields larger than 88 mT the electron density along the expansion axis does not depend strongly on the magnetic field strength. However, T_{e} is susceptible to the B field and reaches at 170 mT a maximum of 2.5 eV at a distance of 1.5 cm from the exit of the cascaded arc. To determine also the effect of the arc current through the arc, measurements were performed with arc currents of 45, 60, and 75 A at background pressures of 9.7 and 88.3 Pa. At constant magnetic field n_{e} decreases from the exit of the arc along the expansion axis when the arc current is decreased. At 88.3 Pa n_{e} shows a higher value close to the exit of the arc, but a faster decay along the expansion axis with respect to the 9.7 Pa case. T_{e} is overall higher at lower pressure reaching a maximum of 3.2 eV at the lower arc current of 45 A. The results of this study complement our understanding and the characterization of expanding hydrogen plasmas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.94.023201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!