Experimental characterization of collision avoidance in pedestrian dynamics.

Phys Rev E

Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.

Published: August 2016

In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.022318DOI Listing

Publication Analysis

Top Keywords

pedestrian dynamics
8
avoidance distance
8
avoidance
6
experimental characterization
4
characterization collision
4
collision avoidance
4
pedestrian
4
avoidance pedestrian
4
dynamics paper
4
paper avoidance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!