Cancer stem cells (CSCs), also known as tumor initialing cells, have self-renewal capacity and are believed to play an important role in residual disease or tumor relapse. CSCs exhibit characteristic slow growth rate and are resistant to conventional chemotherapy/radiotherapy in experimental models. The type of cells commonly employs aberrant activity of the embryonic signal transduction pathways - Notch, Hedgehog (Hh), and Wnt - for uncontrolled proliferation and survival. Areas covered: The following article discusses key genetic and molecular alterations in Notch, Hh and Wnt pathways and drugs targeting the alterations for the treatment of leukemia and lymphoma. Expert opinion: Early signs of signal agent activity have been observed in certain types of leukemia and lymphoma with experimental therapeutics targeting the embryonic pathways in the CSC signaling network. However, clinical development of agents that inhibit the Wnt/β-catenin, Notch and Hh signaling appear to be more complex in relapsed or refractory malignancies. A strategy to effectively target signaling may rely on early application of biomarkers representative of the active signaling nodes companion to the molecularly targeted agents. Biomarkers for efficacy could potentially guide selective treatment of hematological malignancies or cancer with drugs that target the embryonic pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17460441.2016.1236785 | DOI Listing |
Leuk Lymphoma
January 2025
Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.
Brentuximab vedotin (BV) plus doxorubicin, vinblastine and dacarbazine (AVD) demonstrated to improve survival compared to ABVD as frontline treatment of advanced stage Hodgkin Lymphoma (HL). We retrospectively collected data of 99 stage IV HL patients treated off-protocol with BV-AVD to evaluate the predictive role of interim-PET. Median age was 36 years (range: 18-82); 83.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Richter transformation (RT) is a rare albeit devastating complication of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). RT is defined as an aggressive lymphoma, typically diffuse large B-cell lymphoma, in the setting of CLL. A clonal relationship to the preceding CLL clone is detected in the majority of RT cases and confers more aggressive clinicopathologic kinetics, resistance to standard chemoimmunotherapy regimens, and inferior survival.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain.
Recent studies have demonstrated the association between constitutional ring chromosome 21 (r(21)c) and the development of B-cell acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21). iAMP21 acts as a driver which is often accompanied by secondary alterations that influence disease progression. Here, we report an atypical case of iAMP21 B-ALL with a unique molecular profile in the context of r(21)c.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
Bone marrow transplantation (BMT) is mainly performed to restore an anti-tumor immune response, called the graft-versus-tumor (GVT) effect, against leukemia, myeloma and lymphoma. This GVT reactivity is driven by donor T cells, and it can also cause lethal graft-versus-host disease (GVHD). We previously demonstrated that the colonization of mice with helminths preserves the GVT response while suppressing GVHD.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy.
Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!