Bioorthogonal Modification of the Major Sheath Protein of Bacteriophage M13: Extending the Versatility of Bionanomaterial Scaffolds.

Bioconjug Chem

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue, Waterloo, Ontario, Canada N2L 3G1.

Published: October 2016

With a mass of ∼1.6 × 10 Daltons and composed of approximately 2700 proteins, bacteriophage M13 has been employed as a molecular scaffold in bionanomaterials fabrication. In order to extend the versatility of M13 in this area, residue-specific unnatural amino acid incorporation was employed to successfully display azide functionalities on specific solvent-exposed positions of the pVIII major sheath protein of this bacteriophage. Employing a combination of engineered mutants of the gene coding for the pVIII protein, the methionine (Met) analog, l-azidohomoalanine (Aha), and a suitable Escherichia coli Met auxotroph for phage production, conditions were developed to produce M13 bacteriophage labeled with over 350 active azides (estimated by fluorescent dye labeling utilizing a strain-promoted azide-alkyne cycloaddition) and capable of azide-selective attachment to 5 nm gold nanoparticles as visualized by transmission electron microscopy. The capability of this system to undergo dual labeling utilizing both chemical acylation and bioorthogonal cycloaddition reactions was also verified. The above stratagem should prove particularly advantageous in the preparation of assemblies of larger and more complex molecular architectures based on the M13 building block.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.6b00460DOI Listing

Publication Analysis

Top Keywords

major sheath
8
sheath protein
8
protein bacteriophage
8
bacteriophage m13
8
labeling utilizing
8
m13
5
bioorthogonal modification
4
modification major
4
bacteriophage
4
m13 extending
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!