Photocrosslinkable Trehalose Derivatives Carrying Mesogenic Groups: Synthesis, Characterization, and in Vitro Evaluation for Fibroblast Attachment.

J Funct Biomater

Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan.

Published: September 2016

A photocrosslinkable trehalose derivative carrying mesogenic groups was synthesized by esterification reactions. The derivative (TC-HBPHA) was synthesized by the reaction of partially cinnamoyl-modified trehalose (TC4) with 4-(4-hexyloxybenzoyloxy)phenoxy-6-oxohexanoic acid (HBPHA) as a mesogenic unit. TC-HBPHA showed a nematic liquid crystalline mesophase at a temperature range from 150 °C to 175 °C in the heating process under observation with a polarized optical microscope. The dimerization of the cinnamoyl groups of TC-HBPHA by ultraviolet (UV) light irradiation was monitored by ultraviolet-visible (UV-Vis) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The photocrosslinked film was obtained after the UV irradiation of TC-HBPHA, and it kept the liquid crystalline mesophase at almost the same temperature range. Fibroblast cells cultured on the photocrosslinked TC-HBPHA proliferated as well as on the polystyrene culture plate, indicating that the film has no toxicity. Interestingly, some cells on photocrosslinked TC-HBPHA had a spindle shape and aligned characteristically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5040997PMC
http://dx.doi.org/10.3390/jfb7030024DOI Listing

Publication Analysis

Top Keywords

photocrosslinkable trehalose
8
carrying mesogenic
8
mesogenic groups
8
liquid crystalline
8
crystalline mesophase
8
mesophase temperature
8
temperature range
8
photocrosslinked tc-hbpha
8
tc-hbpha
6
trehalose derivatives
4

Similar Publications

Controlled release of bioactive IL-2 from visible light photocured biodegradable elastomers for cancer immunotherapy applications.

Pharm Dev Technol

January 2022

Tissue Engineering and Nanopharmaceuticals Research Laboratory, Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar.

Biodegradable elastomeric controlled-release poly (decane-co-tricarballylate) (PDET) based matrices capable of maintaining the stability and bioactivity of Interleukin-2 (IL-2) through the utilization of visible-light curing and solvent-free loading of the cytokine are reported. The elastomeric devices were fabricated by intimately mixing lyophilized IL-2 powder with the acrylated prepolymer before photocrosslinking. The bioactivity of the released protein was assessed by its ability to stimulate the proliferation of the C57BL/6 mouse cytotoxic T lymphocyte, and its concentration was analysed using ELISA.

View Article and Find Full Text PDF

Mycobacteria have a distinctive glycolipid-rich outer membrane, the mycomembrane, which is a critical target for tuberculosis drug development. However, proteins that associate with the mycomembrane, or that are involved in its metabolism and host interactions, are not well-characterized. To facilitate the study of mycomembrane-related proteins, we developed photoactivatable trehalose monomycolate analogues that metabolically incorporate into the mycomembrane in live mycobacteria, enabling photo-cross-linking and click-chemistry-mediated analysis of mycolate-interacting proteins.

View Article and Find Full Text PDF

A photocrosslinkable trehalose derivative carrying mesogenic groups was synthesized by esterification reactions. The derivative (TC-HBPHA) was synthesized by the reaction of partially cinnamoyl-modified trehalose (TC4) with 4-(4-hexyloxybenzoyloxy)phenoxy-6-oxohexanoic acid (HBPHA) as a mesogenic unit. TC-HBPHA showed a nematic liquid crystalline mesophase at a temperature range from 150 °C to 175 °C in the heating process under observation with a polarized optical microscope.

View Article and Find Full Text PDF

Low melting point amphiphilic microspheres for delivery of bone morphogenetic protein-6 and transforming growth factor-β3 in a hydrogel matrix.

J Control Release

February 2012

Department of Chemical Engineering, Queen's University and Human Mobility Research Center, Kingston General Hospital, Kingston, ON, Canada.

Low melting-point poly(1,3-trimethylene carbonate-co-ε-caprolactone)-b-poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate-co-ε-caprolactone), P(TMC-CL)(2)-PEG, was employed to fabricate microspheres for sustained growth factor delivery in a photocrosslinked N-methacrylate glycol chitosan hydrogel matrix. The P(TMC-CL)(2)-PEG had a melting range such that it was solid at 10°C, yet liquid with a low degree of crystallinity at 37°C. The in vitro degradation of P(TMC-CL)(2)-PEG microspheres was slow, regardless of the triblock copolymer molecular weight and so did not influence protein release.

View Article and Find Full Text PDF

The feasibility of generating an extended period of linear release of therapeutic proteins from photo-cross-linked, biodegradable elastomer monolithic devices in vitro has been previously demonstrated. The release is driven primarily by the osmotic pressure generated upon the dissolution of the encapsulated particles within the polymer. The osmotic pressure is provided by co-incorporation into the particle of trehalose as an osmotigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!