Thermoregulation is an essential homeostatic process in which critical mechanisms of heat production and dissipation are controlled centrally in large part by the hypothalamus and peripherally by activation of the sympathetic nervous system. Drugs that disrupt the components of this highly orchestrated multi-organ process can lead to life-threatening hyperthermia. In most cases, hyperthermic agents raise body temperature by increasing the central and peripheral release of thermoregulatory neurotransmitters that ultimately lead to heat production in thermogenic effector organs skeletal muscle (SKM) and brown adipose tissue (BAT). In many cases hyperthermic drugs also decrease heat dissipation through peripheral changes in blood flow. Drug-induced heat production is driven by the stimulation of mechanisms that normally regulate the adaptive thermogenic responses including both shivering and non-shivering thermogenesis (NST) mechanisms. Modulation of the mitochondrial electrochemical proton/pH gradient by uncoupling protein 1 (UCP1) in BAT is the most well characterized mechanism of NST in response to cold, and may contribute to thermogenesis induced by sympathomimetic agents, but this is far from established. However, the UCP1 homologue, UCP3, and the ryanodine receptor (RYR1) are established mediators of toxicant-induced hyperthermia in SKM. Defining the molecular mechanisms that orchestrate drug-induced hyperthermia will be essential in developing treatment modalities for thermogenic illnesses. This review will briefly summarize mechanisms of thermoregulation and provide a survey of pharmacologic agents that can lead to hyperthermia. We will also provide an overview of the established and candidate molecular mechanisms that regulate the actual thermogenic processes in heat effector organs BAT and SKM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008714PMC
http://dx.doi.org/10.4161/23328940.2014.985953DOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
12
heat production
12
drug-induced hyperthermia
8
cases hyperthermic
8
effector organs
8
mechanisms regulate
8
hyperthermia will
8
mechanisms
7
heat
6
hyperthermia
5

Similar Publications

Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

CMPK2 promotes NLRP3 inflammasome activation via mtDNA-STING pathway in house dust mite-induced allergic rhinitis.

Clin Transl Med

January 2025

Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.

Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.

Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.

View Article and Find Full Text PDF

[A Review of progresses in research on delayed resistance to EGFR-TKI by Traditional Chinese medicine via inhibiting cancer stem cells properties].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Shandong First Medical University Affiliated Cancer Hospital, Jinan 250117, China. *Corresponding author, E-mail:

It has been popular and challenging to undertake researches on the delay of acquired resistance of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI). As key cells for tumor initiation, cancer stem cells (CSC) play an important role in the process of resistance to EGFR-TKI. Although preliminary studies found that traditional Chinese medicine (TCM) could inhibit CSC properties and delay EGFR-TKI resistance, the specific molecular mechanism remains unclear.

View Article and Find Full Text PDF

[Expression of BTLA/HVEM axis in hematological and prospects for immune target therapy].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China. *Corresponding authors, E-mail:

B and T lymphocyte attenuator (BTLA) is an inhibitory immune checkpoint, which typically interacts with herpesvirus entry mediator (HVEM) and plays a crucial role in regulating immune balance. BTLA interacts with its ligand HVEM in a cis manner on the surface of the same immune cell to maintain immune tolerance, while trans interactions on the surface of different immune cells mediate immunosuppressive effects. Dysregulation of the BTLA/HVEM axis can impair the functions of immune cells, particularly T lymphocytes, promoting immune escape of tumor cells and ultimately leading to tumor progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!