A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamics of Elastic Beams with Embedded Fluid-Filled Parallel-Channel Networks. | LitMetric

Dynamics of Elastic Beams with Embedded Fluid-Filled Parallel-Channel Networks.

Soft Robot

Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel .

Published: March 2015

A pressurized fluid-filled parallel-channel network embedded in an elastic beam, asymmetrically to the neutral plane, will create a deformation field within the beam. Deformation due to embedded fluidic networks is currently studied in the context of soft actuators and soft-robotic applications. Expanding on this concept, configurations can be designed so that the pressure in the channel network is created directly from external forces acting on the beam, and thus can be viewed as passive solid-fluid composite structures. We approximate the deformation of such structures and relate the fluid pressure and geometry of the network to a continuous deformation-field function. This enables the design of networks creating steady arbitrary deformation fields as well as to eliminate deformation created by external time-varying forces, thus increasing the effective rigidity of the beam. In addition, by including the effects of the deformation created by the channel network on the beam inertia, we can modify the response of the beam to external time-varying forces. We present a scheme to design channel networks that create predefined oscillating deformation patterns in response to external oscillating forces. The ability to include inertial effects is relevant to the design of dynamic soft robots and soft actuators. Our results are illustrated and validated by numerical computations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997625PMC
http://dx.doi.org/10.1089/soro.2014.0020DOI Listing

Publication Analysis

Top Keywords

fluid-filled parallel-channel
8
soft actuators
8
channel network
8
deformation created
8
external time-varying
8
time-varying forces
8
deformation
7
beam
6
dynamics elastic
4
elastic beams
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!