Primary Succession of Nitrogen Cycling Microbial Communities Along the Deglaciated Forelands of Tianshan Mountain, China.

Front Microbiol

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, MelbourneVIC, Australia.

Published: September 2016

Structural succession and its driving factors for nitrogen (N) cycling microbial communities during the early stages of soil development (0-44 years) were studied along a chronosequence in the glacial forelands of the Tianshan Mountain No.1 glacier in the arid and semi-arid region of central Asia. We assessed the abundance and population of functional genes affiliated with N-fixation (nifH), nitrification (bacterial and archaeal amoA), and denitrification (nirK/S and nosZ) in a glacier foreland using molecular methods. The abundance of functional genes significantly increased with soil development. N cycling community compositions were also significantly shifted within 44 years and were structured by successional age. Cyanobacterial nifH gene sequences were the most dominant N fixing bacteria and its relative abundance increased from 56.8-93.2% along the chronosequence. Ammonia-oxidizing communities shifted from the Nitrososphaera cluster (AOA-amoA) and the Nitrosospira cluster ME (AOB-aomA) in younger soils (0 and 5 years) to communities dominated by soil and sediment 1 (AOA-amoA) and Nitrosospira Cluster 2 Related (AOB-aomA) in older soils (≥17 years). Most of the denitrifers closest relatives were potential aerobic denitrifying bacteria, and some other types of denitrifying bacteria (like autotrophic nitrate-reducing, sulfide-oxidizing bacteria and denitrifying phosphorus removing bacteria) were also detected in all soil samples. The regression analysis showed that N cycling microbial communities were dominant in younger soils (0-5 years) and significantly correlated with soil total carbon, while communities that were most abundant in older soils were significantly correlated with soil total nitrogen. These results suggested that the shift of soil C and N contents during the glacial retreat significantly influenced the abundance, composition and diversity of N cycling microbial communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003921PMC
http://dx.doi.org/10.3389/fmicb.2016.01353DOI Listing

Publication Analysis

Top Keywords

cycling microbial
16
microbial communities
16
nitrogen cycling
8
forelands tianshan
8
tianshan mountain
8
soil development
8
functional genes
8
aoa-amoa nitrosospira
8
nitrosospira cluster
8
cluster aob-aoma
8

Similar Publications

Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.

View Article and Find Full Text PDF

Unraveling the interaction of dissolved organic matter and microorganisms with internal phosphorus cycling in the floodplain lake ecosystem.

Environ Res

January 2025

College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China. Electronic address:

Internal nutrient cycling, especially phosphorus (P), is of great influence in lake eutrophication. Dissolved organic matter (DOM) and microorganisms are ubiquitous in the sediments and closely associated with P-cycling. However, the underlying interactions of DOM, microorganisms and P in floodplain lake area with different hydrological characteristics remain scarce.

View Article and Find Full Text PDF

Precipitation changes reshape desert soil microbial community assembly and potential functions.

Environ Res

January 2025

Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Understanding the responses of desert microbial communities to escalating precipitation changes is a significant knowledge gap in predicting future soil health and ecological function. Through a five-year precipitation manipulation experiment, we investigated the contrasting eco-evolutionary processes of desert bacteria and fungi that manifested in changes to the assembly and potential functions of the soil microbiome. Elevated precipitation increased the alpha diversity and network complexity of bacteria and fungi, proportion of non-dominant phyla, and abundance of carbon- and nitrogen-fixing bacteria and saprophytic, symbiotic, and pathogenic fungi.

View Article and Find Full Text PDF

The expansion of aquaculture areas has encroached upon vast areas of coastal wetlands and introduced excessive nitrogen inputs, disrupting microbial communities and contributing to various environmental issues. However, investigations on how aquaculture affects microbial communities and nitrogen metabolism mechanisms in coastal tidal flats remain scarce. Hence, we explored the composition, diversity, and assembly processes of nitrogen-cycling (N-cycling) microbial communities in tidal flats in Jiangsu using metagenomic assembly methods.

View Article and Find Full Text PDF

The products of an advanced sewage sludge fermentation process can be used to generate polyhydroxyalkanoates (PHAs), precursors of bioplastics considered excellent candidates for replacing petroleum-derived plastics. The aerobic feast-anoxic famine cycling strategy has proven to be an efficient method for enriching sewage sludge microbiota with PHA-producing microorganisms. This work evaluated the effect of different carbon to nitrogen ratios (C/N) of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!