In mammals, initial detection of olfactory stimuli is mediated by sensory neurons in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). The heterotrimeric GTP-binding protein Go is widely expressed in the MOE and VNO of mice. Early studies indicated that Go expression in VNO sensory neurons is critical for directing social and sexual behaviors in female mice [Oboti L, et al. (2014) BMC Biol 12:31]. However, the physiological functions of Go in the MOE have remained poorly defined. Here, we examined the role of Go in the MOE using mice lacking the α subunit of Go Development of the olfactory bulb (OB) was perturbed in mutant mice as a result of reduced neurogenesis and increased cell death. The balance between cell types of OB interneurons was altered in mutant mice, with an increase in the number of tyrosine hydroxylase-positive interneurons at the expense of calbindin-positive interneurons. Sexual behavior toward female mice and preference for female urine odors by olfactory sensory neurons in the MOE were abolished in mutant male mice. Our data suggest that Go signaling is essential for the structural and functional integrity of the MOE and for specification of OB interneurons, which in turn are required for the transmission of pheromone signals and the initiation of mating behavior with the opposite sex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047177PMC
http://dx.doi.org/10.1073/pnas.1613026113DOI Listing

Publication Analysis

Top Keywords

main olfactory
12
sensory neurons
12
mating behavior
8
mice
8
female mice
8
mutant mice
8
olfactory
6
moe
6
development main
4
olfactory system
4

Similar Publications

Background: Food safety has attracted increasing attention in recent years. Harmful gases often produced during food storage have devastating effects on human health and ecosystems, and identifying and detecting them is essential. To date, many traditional methods have been used to monitor the freshness of food products.

View Article and Find Full Text PDF

Perception of Sour Taste in Subjects with Olfactory Deficits: Role of Myrtle Aromatization.

Nutrients

December 2024

Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SP 8 Monserrato, 09042 Cagliari, Italy.

Background: Sour taste is associated with acid-base homeostasis, which is critical to cell metabolism and health conditions. Vinegar, which contains acetic acid as the main component, is a sour food considered the second most common condiment in Italy.

Objectives: The aim of the study was to assess differences in sourness perception in subjects with olfactory deficits compared to controls and evaluate myrtle aromatization's potential effect in modulating sourness perception in subjects with hyposmia.

View Article and Find Full Text PDF

Linking Adult Olfactory Neurogenesis to Social Reproductive Stimuli: Mechanisms and Functions.

Int J Mol Sci

December 2024

Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.

Over the last three decades, adult neurogenesis in mammals has been a central focus of neurobiological research, providing insights into brain plasticity and function. However, interest in this field has recently waned due to challenges in translating findings into regenerative applications and the ongoing debate about the persistence of this phenomenon in the adult human brain. Despite these hurdles, significant progress has been made in understanding how adult neurogenesis plays a critical role in the adaptation of brain circuits to environmental stimuli regulating key brain functions.

View Article and Find Full Text PDF

Background: NSAID-exacerbated respiratory disease (N-ERD) is a hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin or ibuprofen, accompanied by chronic rhinosinusitis (with or without nasal polyps) or asthma. The prevalence of hypersensitivity to NSAIDs is estimated to be 2%. The first line of treatment is the avoidance of NSAIDs.

View Article and Find Full Text PDF

Small Molecules in Parkinson's Disease Therapy: From Dopamine Pathways to New Emerging Targets.

Pharmaceuticals (Basel)

December 2024

BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea.

Parkinson's disease (PD) is a chronic, progressive neurological disorder affecting approximately 10 million people worldwide, with prevalence expected to rise as the global population ages. It is characterized by the degeneration of dopamine-producing neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremor, rigidity, bradykinesia, postural instability, and gait disturbances, as well as non-motor symptoms including olfactory disturbances, sleep disorders, and depression. Currently, no cure exists for PD, and most available therapies focus on symptom alleviation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!