AI Article Synopsis

  • SOX9 is a master transcription factor involved in development and stem cell processes, and its regulation by FBW7, a tumor suppressor, is key to understanding its role in cancer.
  • FBW7 targets SOX9 for degradation by recognizing a specific site phosphorylated by GSK3; if SOX9 isn't degraded, it leads to increased migration, metastasis, and drug resistance in medulloblastoma.
  • In medulloblastoma, mutations or low levels of FBW7 result in elevated SOX9, correlating with worse patient outcomes; inhibiting the PI3K/AKT/mTOR pathway can destabilize SOX9, making cancer cells more susceptible to treatment.

Article Abstract

SOX9 is a master transcription factor that regulates development and stem cell programs. However, its potential oncogenic activity and regulatory mechanisms that control SOX9 protein stability are poorly understood. Here, we show that SOX9 is a substrate of FBW7, a tumor suppressor, and a SCF (SKP1/CUL1/F-box)-type ubiquitin ligase. FBW7 recognizes a conserved degron surrounding threonine 236 (T236) in SOX9 that is phosphorylated by GSK3 kinase and consequently degraded by SCF Failure to degrade SOX9 promotes migration, metastasis, and treatment resistance in medulloblastoma, one of the most common childhood brain tumors. FBW7 is either mutated or downregulated in medulloblastoma, and in cases where FBW7 mRNA levels are low, SOX9 protein is significantly elevated and this phenotype is associated with metastasis at diagnosis and poor patient outcome. Transcriptional profiling of medulloblastoma cells expressing a degradation-resistant SOX9 mutant reveals activation of pro-metastatic genes and genes linked to cisplatin resistance. Finally, we show that pharmacological inhibition of PI3K/AKT/mTOR pathway activity destabilizes SOX9 in a GSK3/FBW7-dependent manner, rendering medulloblastoma cells sensitive to cytostatic treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069553PMC
http://dx.doi.org/10.15252/embj.201693889DOI Listing

Publication Analysis

Top Keywords

sox9
9
medulloblastoma cells
8
fbw7
5
medulloblastoma
5
fbw7 suppression
4
suppression leads
4
leads sox9
4
sox9 stabilization
4
stabilization increased
4
increased malignancy
4

Similar Publications

Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.

View Article and Find Full Text PDF

SOX9 encodes an SRY-related transcription factor critical for chondrogenesis and sex determination among other processes. Loss-of-function variants cause campomelic dysplasia and Pierre Robin Sequence, while both gain- and loss-of-function variants cause disorders of sex development. SOX9 has also been linked to scoliosis and cancers, but variants are undetermined.

View Article and Find Full Text PDF

Functional analysis of SRY variants in individuals with 46,XY differences of sex development.

Mol Cell Endocrinol

January 2025

Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia. Electronic address:

In mammals, male sexual development is initiated by the expression of the Sex-determining-Region-Y (SRY) gene. SRY contains a highly conserved high mobility group (HMG) box essential for DNA binding and activity. Variants in SRY cause Differences of Sex Development (DSD), accounting for 10-15% of 46, XY gonadal dysgenesis cases.

View Article and Find Full Text PDF

The oral mucosa undergoes daily insults, and stem cells in the epithelial basal cell layer regenerate gingiva tissue to maintain oral health. The Iroquois Homeobox 1 (IRX1) protein is expressed in the stem cell niches in human/mouse oral epithelium and mesenchyme under homeostasis. We found that Irx1+/- heterozygous (Het) mice have delayed wound closure, delayed morphological changes of regenerated epithelium, and defective keratinocyte proliferation and differentiation during wound healing.

View Article and Find Full Text PDF

Deer antler reserve mesenchyme cells modified with miR-145 promote chondrogenesis in cartilage regeneration.

Front Vet Sci

December 2024

Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.

Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of cells for cartilage regeneration therapy due to their chondrogenic differentiation potential. However, the regulatory mechanism has not yet been elucidated. In this study, we analyzed the role of microRNAs (miRNAs) in regulating the differentiation of RMCs and in the post-transcriptional regulation of chondrogenesis and hypertrophic differentiation at the molecular and histological levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!