Although granule secretion is pivotal in many platelet responses, the fusion routes of α and δ granule release remain uncertain. We used a 3D reconstruction approach based on electron microscopy to visualize the spatial organization of granules in unstimulated and activated platelets. Two modes of exocytosis were identified: a single mode that leads to release of the contents of individual granules and a compound mode that leads to the formation of granule-to-granule fusion, resulting in the formation of large multigranular compartments. Both modes occur during the course of platelet secretion. Single fusion events are more visible at lower levels of stimulation and early time points, whereas large multigranular compartments are present at higher levels of agonist and at later time points. Although α granules released their contents through both modes of exocytosis, δ granules underwent only single exocytosis. To define the underlying molecular mechanisms, we examined platelets from vesicle-associated membrane protein 8 (VAMP8) null mice. After weak stimulation, compound exocytosis was abolished and single exocytosis decreased in VAMP8 null platelets. Higher concentrations of thrombin bypassed the VAMP8 requirement, indicating that this isoform is a key but not a required factor for single and/or compound exocytosis. Concerning the biological relevance of our findings, compound exocytosis was observed in thrombi formed after severe laser injury of the vessel wall with thrombin generation. After superficial injury without thrombin generation, no multigranular compartments were detected. Our studies suggest that platelets use both modes of membrane fusion to control the extent of agonist-induced exocytosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410540PMC
http://dx.doi.org/10.1182/blood-2016-03-705681DOI Listing

Publication Analysis

Top Keywords

multigranular compartments
12
compound exocytosis
12
activated platelets
8
platelets modes
8
exocytosis
8
modes exocytosis
8
mode leads
8
large multigranular
8
time points
8
single exocytosis
8

Similar Publications

Although granule secretion is pivotal in many platelet responses, the fusion routes of α and δ granule release remain uncertain. We used a 3D reconstruction approach based on electron microscopy to visualize the spatial organization of granules in unstimulated and activated platelets. Two modes of exocytosis were identified: a single mode that leads to release of the contents of individual granules and a compound mode that leads to the formation of granule-to-granule fusion, resulting in the formation of large multigranular compartments.

View Article and Find Full Text PDF

Insulin and C-peptide antigenic sites have been revealed in rat pancreatic B cells by applying immunohistochemical and cytochemical techniques. Fluorescein and rhodamine stains at the light-microscope level have detected both antigens in the same B cells. With the protein A-gold technique, labeling for both antigens was found in the cisternae of the rough endoplasmic reticulum, in those of the transitional elements, in all the cisternae of the Golgi apparatus except in the trans-most one, in the smooth but not in the coated vesicles, in the immature and mature secretory granules, and in some lysosomal (multigranular) structures.

View Article and Find Full Text PDF

In terrestrial mammals, stratum corneum lipids derive from two sources: deposition of lamellar body lipids in stratum corneum interstices and excretion of sebaceous lipids onto the skin surface, resulting in a two-compartment ("bricks and mortar") system of lipid-depleted cells surrounded by lipid-enriched intercellular spaces. In contrast, intracellular lipid droplets, normally not present in the epidermis of terrestrial mammals, are prominent in avian and marine mammal epidermis (cetaceans, manatees). We compared the transepidermal water loss, ultrastructure, and lipid biochemistry of the viable epidermis and stratum corneum of pigeon apterium, fledgling (featherless) zebra finches, painted storks, cetaceans, and manatees to those of humans and mice.

View Article and Find Full Text PDF

Though avian skin is known to possess a highly lipogenic epidermis, little is known about its permeability barrier function. We correlated epidermal barrier function, fine structure and lipid biochemistry in the pigeon, Columbia livia, and compared these features with terrestrial mammalian systems. Whereas barrier function, as assessed by transepidermal water loss was not as efficient as in mammals, both groups shared certain morphological features including substantial compartmentalization of lipids in stratum corneum intercellular domains.

View Article and Find Full Text PDF

We have obtained evidence by autoradiography and immunocytochemistry that mature secretory granules of the pancreatic B-cell gain access to a lysosomal compartment (multigranular or crinophagic bodies) where the secretory granule content is degraded. Whereas the mature secretory granule content shows both insulin and C-peptide (proinsulin) immunoreactivities, in crinophagic bodies only insulin, but not C-peptide, immunoreactivity was detectable. The absence of C-peptide (proinsulin) immunoreactivity in multigranular bodies, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!