In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed "mitotic nanotubes," were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105929 | PMC |
http://dx.doi.org/10.1080/15384101.2016.1231280 | DOI Listing |
J Vet Diagn Invest
January 2025
Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
Tumoral macrocysts (grossly observable cysts) are common in human pilocytic astrocytomas but are rarely reported in canine astrocytomas. Here we describe 7 canine astrocytomas with macrocysts. The median age of affected patients was 9.
View Article and Find Full Text PDFJ Vet Diagn Invest
January 2025
Veterinary Pathology Laboratory, Veterinary Hospital-Universidade Federal de Mato Grosso, Cuiabá, Brazil.
Ossifying fibroma (OF) is a slow-growing, expansive, and benign fibro-osseous neoplasm that is rare in cattle. It mainly affects the craniofacial bones, especially the mandible. Here, we report 2 cases of mandibular OF in Nelore and mixed-breed steers with enlarged masses in the rostral portion of the mandible.
View Article and Find Full Text PDFMod Pathol
January 2025
Department of Pathology, Boston Children's Hospital, Boston, MA, 02115 USA. Electronic address:
Soft tissue tumors with smooth muscle differentiation are rare in pediatric patients. Despite often showing morphologic features sufficient for classification as "leiomyosarcoma" in adults (e.g.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
Sci Rep
January 2025
Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA.
Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!