Prognostic relevance of high atonal homolog-1 expression in Merkel cell carcinoma.

J Cancer Res Clin Oncol

Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, West German Cancer Center, Dermatology, University Duisburg-Essen, Essen, Germany.

Published: January 2017

Background: It has recently been reported that atonal homolog 1 (ATOH1) gene is down-regulated in Merkel cell carcinoma (MCC) and thus may represent a tumor suppressor gene.

Objectives: We aimed to test for ATOH1 gene mutations and expression levels in MCC tissues and cell lines.

Methods: Genomic DNA isolation and amplification via PCR was successfully performed in 33 MCCs on formalin-fixed paraffin-embedded tissue and three MCC cell lines, followed by Sanger sequencing of the whole ATOH1 gene to detect genomic aberrations. ATOH1 mRNA levels were determined by RT-PCR. Immunohistochemistry of ATOH1 was performed to quantify protein expression in tumor samples and cell lines.

Results: Neither in any of the 33 MCC tissue samples nor in the three cell lines ATOH1 mutations were present. ATOH1 was expressed in all lesions, albeit at different expression levels. Univariate analysis revealed that the total immunohistology score significantly correlated with the occurrence of tumor relapse (r = 0.57; P = 0.0008). This notion was confirmed in multivariate analysis suggesting that ATOH1 expression is a potential independent predictor for tumor relapse in MCC patients (P = 0.028). MCC-related death also correlated with ATOH1 expression (r = 0.4; P = 0.025); however, ATOH1 expression did not retain its predictive value in the regression model.

Conclusions: In contrast to anecdotal reports ATOH1 expression is not lost by genetic alterations in MCC. However, protein expression of ATOH1 is increased in advanced MCC indicating that ATOH1 is involved in MCC progression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-016-2257-6DOI Listing

Publication Analysis

Top Keywords

atoh1 expression
16
atoh1
13
atoh1 gene
12
expression
9
merkel cell
8
cell carcinoma
8
mcc
8
expression levels
8
cell lines
8
protein expression
8

Similar Publications

Extent of genetic and epigenetic factor reprogramming via a single viral vector construct in deaf adult mice.

Hear Res

December 2024

Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia. Electronic address:

In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage.

View Article and Find Full Text PDF

Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.

View Article and Find Full Text PDF

Enteric pathogen rotavirus (RV) primarily infects mature enterocytes at the tips of the intestinal villi; however, the role of secretory Paneth and goblet cells in RV pathogenesis remains unappreciated. Atoh1 knockout mice (Atoh1cKO) were used to conditionally delete Paneth, goblet, and enteroendocrine cells in the epithelium to investigate the role of secretory cells in RV infection. Unexpectedly, the number of infected enterocytes and the amount of RV shedding in the stool were greatly decreased following secretory cell deletion.

View Article and Find Full Text PDF

Identification of an early subset of cerebellar nuclei neurons in mice.

Elife

December 2024

Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.

Cerebellar nuclei (CN) neurons serve as the primary output of the cerebellum and originate from the cerebellar primordium at early stages of cerebellar development. These neurons are diverse, integrating information from the cerebellar cortex and relaying it to various brain regions. Employing various methodologies, we have characterized a specific subset of CN neurons that do not originate from the rhombic lip or ventricular zone of the cerebellar primordium.

View Article and Find Full Text PDF

Long-range enhancers maintain competency for hair cell regeneration in the inner ear.

Proc Natl Acad Sci U S A

December 2024

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles CA 90033.

During tissue regeneration, lineage-related cells can switch their fate to replace missing cells. This cell plasticity is particularly prominent in more regenerative vertebrates such as zebrafish, yet the molecular basis by which cells transdifferentiate into another cell type upon injury remains unclear. Here, we investigate the epigenetic basis of regenerative transdifferentiation in the inner ear, where supporting cells (SCs) generate mechanosensory hair cells (HCs) upon damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!