Butelase-Mediated Macrocyclization of d-Amino-Acid-Containing Peptides.

Angew Chem Int Ed Engl

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.

Published: October 2016

Macrocyclic compounds have received increasing attention in recent years. With their large surface area, they hold promise for inhibiting protein-protein interactions, a chemical space that was thought to be undruggable. Although many chemical methods have been developed for peptide macrocyclization, enzymatic methods have emerged as a promising new economical approach. Thus far, most enzymes have been shown to act on l-peptides; their ability to cyclize d-amino-acid-containing peptides has rarely been documented. Herein we show that macrocycles consisting of d-amino acids, except for the Asn residue at the ligating site, were efficiently synthesized by butelase 1, an Asn/Asp-specific ligase. Furthermore, by using a peptide-library approach, we show that butelase 1 tolerates most of the d-amino acid residues at the P1'' and P2'' positions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201607188DOI Listing

Publication Analysis

Top Keywords

d-amino-acid-containing peptides
8
butelase-mediated macrocyclization
4
macrocyclization d-amino-acid-containing
4
peptides macrocyclic
4
macrocyclic compounds
4
compounds received
4
received increasing
4
increasing attention
4
attention years
4
years large
4

Similar Publications

Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in promoting oncogenic transcriptional pathways, significantly contributing to the development and progression of cancer. Given the unique biostability of d-amino acid, the development of d-amino acid-containing peptides (DAACPs) is a promising strategy for cancer treatment. Currently, no DAACPs inhibitor targeting CDK9-cyclin T1 have been reported.

View Article and Find Full Text PDF

Discovery, Biosynthesis, and Characterization of Rodencin, a Two-Component Lanthipeptide, Harboring d-Amino Acids Introduced by the Unusual Dehydrogenase RodJ.

J Nat Prod

October 2024

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG The Netherlands.

Lanthipeptides, a group of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit diverse structures and bioactivities. Their biosynthetic enzymes serve as valuable tools for peptide bioengineering. Here, we report a class II lanthipeptide biosynthetic gene cluster in a strain, driving the biosynthesis of a two-component lanthipeptide, termed rodencin, featured by the presence of two different d-amino acids, i.

View Article and Find Full Text PDF

A novel series of metazoan L/D peptide isomerases.

J Biol Chem

July 2024

Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA. Electronic address:

The function of endogenous cell-cell signaling peptides relies on their interactions with cognate receptors, which in turn are influenced by the peptides' structures, necessitating a comprehensive understanding of the suite of post-translational modifications of the peptide. Herein, we report the initial characterization of putative peptide isomerase enzymes extracted from R. norvegicus, A.

View Article and Find Full Text PDF

D-amino acid-containing peptides (DAACPs) in animals are a class of bioactive molecules formed via the posttranslational modification of peptides consisting of all-L-amino acid residues. Amino acid residue isomerization greatly impacts the function of the resulting DAACP. However, because isomerization does not change the peptide's mass, this modification is difficult to detect by most mass spectrometry-based peptidomic approaches.

View Article and Find Full Text PDF

D-amino acid-containing peptides (DAACPs) occur in biological and artificial environments. Since the importance of DAACPs has been recognized, various mass spectrometry-based analytical approaches have been developed. However, the capability of higher-energy collisional dissociation (HCD) fragmentation to characterize DAACP sites has not been evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!