Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models.

J Plant Res

Suri Sehgal Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment ATREE), Royal Enclave, Srirampura, Bangalore, 560064, India.

Published: November 2016

The center of diversity of Piper nigrum L. (Black Pepper), one of the highly valued spice crops is reported to be from India. Black pepper is naturally distributed in India in the Western Ghats biodiversity hotspot and is the only known existing source of its wild germplasm in the world. We used ecological niche models to predict the potential distribution of wild P. nigrum in the present and two future climate change scenarios viz (A1B) and (A2A) for the year 2080. Three topographic and nine uncorrelated bioclim variables were used to develop the niche models. The environmental variables influencing the distribution of wild P. nigrum across different climate change scenarios were identified. We also assessed the direction and magnitude of the niche centroid shift and the change in niche breadth to estimate the impact of projected climate change on the distribution of P. nigrum. The study shows a niche centroid shift in the future climate scenarios. Both the projected future climate scenarios predicted a reduction in the habitat of P. nigrum in Southern Western Ghats, which harbors many wild accessions of P. nigrum. Our results highlight the impact of future climate change on P. nigrum and provide useful information for designing sound germplasm conservation strategies for P. nigrum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-016-0859-3DOI Listing

Publication Analysis

Top Keywords

climate change
20
future climate
16
black pepper
12
western ghats
12
niche models
12
nigrum
9
piper nigrum
8
nigrum black
8
ecological niche
8
distribution wild
8

Similar Publications

Continuous Characterization of Insoluble Particles in Ice Cores Using the Single-Particle Extinction and Scattering Method.

Environ Sci Technol

December 2024

Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, Bern 3012, Switzerland.

This study presents the integration of the single-particle extinction and scattering (SPES) method in a continuous flow analysis (CFA) setup. Continuous measurements with the instrument allow for the characterization of water-insoluble particles in ice cores at high resolution with a minimized risk of contamination. The SPES method can be used to investigate particles smaller than 1 μm, which previously could not be detected by instruments typically used in CFA.

View Article and Find Full Text PDF

Background: The increasing number of motor vehicles in Dhaka city is contributing to a rise in air pollution. Prolonged exposure to vehicle emissions has led to various health issues for everyone, but traffic policies might be particularly affected. This study aims to evaluate their knowledge, attitudes, and practices regarding air pollution, with the goal of raising awareness and promoting healthier practices to mitigate the adverse effects of pollution.

View Article and Find Full Text PDF

Integrating Ecological Suitability and Socioeconomic Feasibility at Landscape Scale to Restore Biodiversity and Ecosystem Services in Southern Chile.

Environ Manage

December 2024

Departamento de Ciencias de la Vida - UD Ecología, Edificio de Ciencias, Universidad de Alcalá, E-28805, Alcalá de Henares, Spain.

Deforestation and forest degradation are key drivers of biodiversity loss and global environmental change. Ecosystem restoration is recognized as a global priority to counter these processes. Forest restoration efforts have commonly adopted a predominantly ecological approach, without including broader socioeconomic variables and the characteristics of the rural context.

View Article and Find Full Text PDF

Since agriculture is a major source of greenhouse gas emissions, accurately calculating these emissions is essential for simultaneously addressing climate change and food security challenges. This paper explores the critical role of trade in transferring agricultural greenhouse gas (AGHG) emissions throughout global agricultural supply chains. We develop a detailed AGHG emission inventory with comprehensive coverage across a wide range of countries and emission sources at first.

View Article and Find Full Text PDF

The development of new urban areas necessitates building on increasingly scarce land, often overlaid on weak soil layers. Furthermore, climate change has exacerbated the extent of global arid lands, making it imperative to find sustainable soil stabilization and erosion mitigation methods. Thus, scientists have strived to find a plant-based biopolymer that favors several agricultural waste sources and provides high strength and durability for sustainable soil stabilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!