Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In practice, food products tend to be contaminated with food-borne pathogens at a low inoculum level. However, the huge potential risk cannot be ignored because microbes may initiate high-speed growth suitable conditions during the food chain, such as transportation or storage. Thus, it is important to perform predictive modeling of microbial single cells. Several key aspects of microbial single-cell modeling are covered in this review. First, based on previous studies, the techniques of microbial single-cell data acquisition and growth data collection are presented in detail. In addition, the sources of microbial single-cell variability are also summarized. Due to model microbial growth, traditional deterministic mathematical models have been developed. However, most models fail to make accurate predictions at low cell numbers or at the single-cell level due to high cell-to-cell heterogeneity. Stochastic models have been a subject of great interest; and these models take into consideration the variability in microbial single-cell behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2016.1217193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!