Light-tunable Fano resonance in metal-dielectric multilayer structures.

Sci Rep

Optics and Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat 10100, Morocco.

Published: September 2016

High-Q optical Fano resonances realized in a variety of plasmonic nanostructures and metamaterials are very much promising for the development of new potent photonic devices, such as optical sensors and switches. One of the key issues in the development is to establish ways to effectively modulate the Fano resonance by external perturbations. Dynamic tuning of the Fano resonance applying the mechanical stress and electric fields has already been demonstrated. Here, we demonstrate another way of tuning, i.e., photo-tuning of the Fano resonance. We use a simple metal-dielectric multilayer structure that exhibits a sharp Fano resonance originating from coupling between a surface plasmon polariton mode and a planar waveguide mode. Using a dielectric waveguide doped with azo dye molecules that undergo photoisomerization, we succeeded in shifting the Fano resonance thorough photo-modulation of the propagation constant of the waveguide mode. The present work demonstrates the feasibility of photo-tuning of the Fano resonance and opens a new avenue towards potential applications of the Fano resonance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021982PMC
http://dx.doi.org/10.1038/srep33144DOI Listing

Publication Analysis

Top Keywords

fano resonance
32
resonance
8
metal-dielectric multilayer
8
fano
8
photo-tuning fano
8
waveguide mode
8
light-tunable fano
4
resonance metal-dielectric
4
multilayer structures
4
structures high-q
4

Similar Publications

In this paper, a new sensor structure is designed, which consists of a metal-insulator-metal (MIM) waveguide and a circular protrusion and a rectangular triangular cavity (CPRTC). The characterization of nanoscale sensors is considered using an approximate numerical method (finite element method). The simulation results show that the sharp asymmetric resonance generated by the interaction between the discrete narrow-band mode and the continuous wideband mode is called Fano resonance.

View Article and Find Full Text PDF

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

Manipulating Fano Coupling in an Opto-Thermoelectric Field.

Adv Sci (Weinh)

January 2025

Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Fano resonances in photonics arise from the coupling and interference between two resonant modes in structures with broken symmetry. They feature an uneven and narrow and tunable lineshape and are ideally suited for optical spectroscopy. Many Fano resonance structures have been suggested in nanophotonics over the last ten years, but reconfigurability and tailored design remain challenging.

View Article and Find Full Text PDF

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

Resonant Auger Decay in Benzene.

J Phys Chem A

January 2025

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!