The scavenging of extracellular macromolecules by engulfment can sustain cell growth in a nutrient-depleted environment. Engulfed macromolecules are contained within vacuoles that are targeted for lysosome fusion to initiate degradation and nutrient export. We have shown that vacuoles containing engulfed material undergo mTORC1-dependent fission that redistributes degraded cargo back into the endosomal network. Here we identify the lipid kinase PIKfyve as a regulator of an alternative pathway that distributes engulfed contents in support of intracellular macromolecular synthesis during macropinocytosis, entosis, and phagocytosis. We find that PIKfyve regulates vacuole size in part through its downstream effector, the cationic transporter TRPML1. Furthermore, PIKfyve promotes recovery of nutrients from vacuoles, suggesting a potential link between PIKfyve activity and lysosomal nutrient export. During nutrient depletion, PIKfyve activity protects Ras-mutant cells from starvation-induced cell death and supports their proliferation. These data identify PIKfyve as a critical regulator of vacuole maturation and nutrient recovery during engulfment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046836PMC
http://dx.doi.org/10.1016/j.devcel.2016.08.001DOI Listing

Publication Analysis

Top Keywords

regulates vacuole
8
vacuole maturation
8
maturation nutrient
8
nutrient recovery
8
recovery engulfment
8
nutrient export
8
pikfyve activity
8
pikfyve
6
nutrient
5
pikfyve regulates
4

Similar Publications

Ginsenoside Ro improves Salmonella Typhimurium-induced colitis through inhibition of the virulence factors SopB and SopE2 via the RAC1/CDC42/ARP2/3 pathway.

FASEB J

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.

Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a serious threat to human and animal health, and there is an urgent need to develop new therapeutic agents. In our in vivo study, ginsenoside Ro (Ro) reduced the mortality rate of S.

View Article and Find Full Text PDF

Role of in Filamentous Growth and Pathogenicity of .

J Fungi (Basel)

November 2024

Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.

is a dimorphic fungus that specifically infects , causing stem swelling and the formation of an edible fleshy stem known as jiaobai. The pathogenicity of is closely associated with the development of jiaobai and phenotypic differentiation. Msb2 acts as a key upstream sensor in the MAPK (mitogen-activated protein kinase) signaling pathway, playing critical roles in fungal hyphal growth, osmotic regulation, maintenance of cell wall integrity, temperature adaptation, and pathogenicity.

View Article and Find Full Text PDF

Endocytosis, endoplasmic reticulum, actin cytoskeleton affected in tilapia liver under polystyrene microplastics and BDE acute co-exposure.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China. Electronic address:

Studies showed that contaminants adhered to the surface of nano-polystyrene microplastics (NPs) have a toxicological effect. Juveniles tilapia were dispersed into four groups: the control group A, 75 nm NPs exposed group B, 5 ng·L 2,2',4,4',5,5'-hexabromodiphenyl ether group C (BDE), and 5 ng·L BDE + 75 nm MPs group D, and acutely exposed for 2, 4 and 8 days. The hepatic histopathological change, enzymatic activities, transcriptomics, and proteomics, have been performed in tilapia.

View Article and Find Full Text PDF

Deciphering roles of nine hydrophobins (Hyd1A-F and Hyd2A-C) in the asexual and insect-pathogenic lifecycles of Beauveria bassiana.

Microbiol Res

December 2024

Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Hydrophobins are small amphiphilic proteins that confer filamentous fungal hydrophobicity needed for hyphal growth, development, dispersal and adhesion to host and substrata. In insect-pathogenic Beauveria bassiana, nine hydrophobins (class I Hyd1A-F and class II Hyd2A-C) were proven to localize on the cell walls of aerial hyphae and conidia but accumulate in the vacuoles and vesicles of submerged hyphae and blastospores, respectively. Conidial hydrophobicity, adhesion to insect cuticle, virulence via normal cuticle infection and dispersal potential were significantly more reduced by the hyd1A deletion leading to complete ablation of slender rodlets on conidial coat than the hyd1B deletion, which caused a failure to assemble morphologically irregular rodlets into orderly bundles.

View Article and Find Full Text PDF

Lipophagy is a selective type of autophagy where lipid droplets are targeted to the lysosome/vacuole for degradation. Even though lipophagy has been reported in various species, many questions remain unaddressed. How are the lipid droplets sequestered to the lysosome? What is the lipophagy receptor(s)? How is this receptor(s) regulated at a posttranslational level? A new collaborative study among several universities conducted on mouse and human hepatocytes sheds light on these questions, deciphering the lipophagy mechanism in the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!