Self-assembly of nanoparticles on living biotemplate surfaces is a promising route to fabricate nano- or microstructured materials with high efficiency and efficacy. We used filamentous fungi to fabricate microtubules of gold nanoparticles through a novel approach that consists of isolating the hyphal growth from the nanoparticle media. This improved methodology resulted in better morphological control and faster adsorption kinetics, which reduced the time needed to form homogeneous microtubules and allowed for control of microtubule thickness through successive additions of nanoparticles. Differences in the adsorption rates due to modifications in the chemical identity of colloidal gold nanoparticles indicated the influence of secondary metabolites and growth media in the fungi metabolism, which demonstrated the need to choose not only the fungus biotemplate but also the correct medium to obtain microtubules with superior properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.6b00340 | DOI Listing |
Discov Nano
January 2025
Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy.
Breast cancer is the most common cancer among women, with over 1 million new cases and around 400,000 deaths annually worldwide. This makes it a significant and costly global health challenge. Standard treatments like chemotherapy and radiotherapy, often used after mastectomy, show varying effectiveness based on the cancer subtype.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, India.
We investigated the and uses of pamoic acid functionalized gold nanoparticles (PA@AuNPs), with a focus on determining their safety and potential toxicity in living beings. To test this theory, the bacterial interaction of PA@AuNPs was studied using , , and cultures, as well as the inhibition of the bovine serum albumin (BSA) protein. The real-time polymerase chain reaction (RT-PCR) is used to measure the expression of target genes.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China.
Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Imaging Physics, The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
This study presents a statistical analysis of how gold nanoparticle (GNP) size and polyethylene glycol (PEG) coating molecular weight (MW) affect the circulation of nanoparticles in blood. We showed a non-linear relationship with interaction between GNP size and PEG MW. The findings revealed a threshold effect, and recommendations for GNP coating are discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!