O-linked β-N-acetyl-glucosamine (O-GlcNAc) is an essential and ubiquitous post-translational modification present in nucleic and cytoplasmic proteins of multicellular eukaryotes. The metabolic chemical probes such as GlcNAc or GalNAc analogues bearing ketone or azide handles, in conjunction with bioorthogonal reactions, provide a powerful approach for detecting and identifying this modification. However, these chemical probes either enter multiple glycosylation pathways or have low labeling efficiency. Therefore, selective and potent probes are needed to assess this modification. We report here the development of a novel probe, 1,3,6-tri-O-acetyl-2-azidoacetamido-2,4-dideoxy-d-glucopyranose (Ac4dGlcNAz), that can be processed by the GalNAc salvage pathway and transferred by O-GlcNAc transferase (OGT) to O-GlcNAc proteins. Due to the absence of a hydroxyl group at C4, this probe is less incorporated into α/β 4-GlcNAc or GalNAc containing glycoconjugates. Furthermore, the O-4dGlcNAz modification was resistant to the hydrolysis of O-GlcNAcase (OGA), which greatly enhanced the efficiency of incorporation for O-GlcNAcylation. Combined with a click reaction, Ac4dGlcNAz allowed the selective visualization of O-GlcNAc in cells and accurate identification of O-GlcNAc-modified proteins with LC-MS/MS. This probe represents a more potent and selective tool in tracking, capturing, and identifying O-GlcNAc-modified proteins in cells and cell lysates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.6b00678 | DOI Listing |
Cell Oncol (Dordr)
December 2024
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
Purpose: Clarification of cisplatin resistance may provide new targets for therapy in cisplatin resistant ovarian cancer. The current study aims to explore involvement of isoforms of AU-rich element RNA-binding protein 1 (AUF1) in cisplatin resistance in ovarian cancer.
Methods: The cancer stem cell-like features were analyzed using colony formation assay, tumor sphere formation assay and nude mouse xenograft experiments.
ChemMedChem
November 2024
Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China.
GlcNAcylation is a prevalent protein modification in eukaryotic cells and increasing evidences indicated that over-expressed O-GlcNAcylation are intimately linked to the development and prognosis of prostate cancer. Thus, exploring this modification in the context of prostate cancer is vital for understanding the underlying mechanisms and hopefully used for future targeted therapies. In this paper, we use our previously established metabolic probes to comprehensively compare the labeling efficiency of O-GlcNAc modified proteins in PC3 cells.
View Article and Find Full Text PDFProtein Sci
October 2024
Department of Chemistry, University of Southern California, Los Angeles, California, USA.
Almost all types of cellular stress induce post-translational O-GlcNAc modifications of proteins, and this increase promotes cell survival. We previously demonstrated that O-GlcNAc on certain small heat shock proteins (sHSPs), including HSP27, directly increases their chaperone activity as one potential protective mechanism. Here, we furthered our use of synthetic proteins to prepare biotinylated sHSPs and show that O-GlcNAc modification of HSP27 also changes how it interacts within the sHSP system and the broader HSP network.
View Article and Find Full Text PDFFront Plant Sci
July 2024
The Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States.
The glycosyl transferases SPINDLY (SPY) and SECRET AGENT (SEC) modify nuclear and cytosolic proteins with -linked fucose or -linked -acetylglucosamine (-GlcNAc), respectively. -fucose and -GlcNAc modifications can occur at the same sites. SPY interacts physically and genetically with GIGANTEA (GI), suggesting that it could be modified by both enzymes.
View Article and Find Full Text PDFCurr Protoc
May 2024
Department of Chemistry, Wayne State University, Detroit, Michigan.
Cells continuously remodel their intracellular proteins with the monosaccharide O-linked N-acetylglucosamine (O-GlcNAc) to regulate metabolism, signaling, and stress. This protocol describes the use of GlycoID tools to capture O-GlcNAc dynamics in live cells. GlycoID constructs contain an O-GlcNAc binding domain linked to a proximity labeling domain and a subcellular localization sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!