Silver nanoparticles (AgNPs) are superior cluster of nanomaterials that are recently recognized for their different applications in various pharmaceutical and clinical settings. The objective of this work deals with novel method for biosynthesis of AgNPs using Azadirachta indica (neem) leaf extract as reducing agent. These bio and chemical synthesized nanoparticles were characterized with the help of UV-vis Spectroscopy, Nanotarc, Dynamic light scattering (DLS), Zeta Potential (ZP), Transmission Electron Microscopy and Fourier transform infrared spectroscopy (FTIR). The obtained results from Nanotrac and TEM revealed that the synthesized AgNPs possess spherical shape with a mean diameter at 94nm for green and 104nm for chemical method, the zeta potential values was -12.02mV for green AgNPs and -10.4mV for chemical AgNPs. In addition, FT-IR measurement analysis was conceded out to identify the Ag ions reduced from the specific functional groups on the AgNPs, which increased the stability of the particles. Further, we compared the toxicities of green and chemical AgNPs against human skin dermal fibroblast (HDFa) and brine shrimp followed by anticancer activity in NCI-H460 cells. We observed green AgNPs cause dose-dependent decrease in cell viability and increase in reactive oxygen species (ROS) generation. Further, we proved to exhibit excellent cytotoxic effect and induction of cellular apoptosis in NCI-H460 cells. Furthermore, green AgNPs had no significant changes in cell viability, ROS production and apoptotic changes in HDFa cells. In contrary, we observed that the chemical AgNPs possess significant toxicities in HDFa cells. Hence, the green AgNPs were able to induce selective toxicity in cancer cells than the chemical AgNPs. Furthermore, green AgNPs exhibit less toxic effects against human red blood cells and brine shrimp (Artemia salina) nauplii than the chemical AgNPs. It was concluded, that apart from being superior over chemical AgNPs, the green AgNPs are effective and safer to the milieu as they show less toxic effect to normal cells and can be extensively applied in biomedical sciences particularly in cancer field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2016.09.003 | DOI Listing |
Environ Toxicol Chem
January 2025
Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
The combination of silver nanoparticles (AgNPs) and ciprofloxacin (CIP) can be considered an alternative to combat multidrug-resistant microbial infections. However, knowledge about their combined toxicity is scarce after being released in an aquatic environment. The present study evaluated the individual toxicity of AgNPs and CIP and their combined toxicity on the unicellular green microalga Chlorella vulgaris, evaluating cellular responses and conducting metabolomic analysis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Plastics and Polymer Engineering, School of Engineering, Plastindia International University, Vapi-396193, Gujarat, India.
This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, 31982, Saudi Arabia.
The spent black tea extract was utilized in order to synthesize the spent black tea silver nanoparticles (SBT-AgNPs). Various parameters were tested to yield the best production of SBT-AgNPs. The characterization was conducted by X-Ray diffraction, Scanning electron microscopy, Zeta potential and energy dispersive X-ray (EDX).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!