AI Article Synopsis

  • Silver nanoparticles (AgNPs), particularly those biosynthesized using Azadirachta indica (neem) leaf extract, show promising applications in pharmaceuticals and clinical settings due to their unique properties.
  • Characterization methods such as UV-vis spectroscopy and Transmission Electron Microscopy revealed that green AgNPs are spherical with sizes around 94nm, demonstrating lower toxicity in human skin cells compared to chemically synthesized AgNPs.
  • Green AgNPs exhibited selective anticancer properties, successfully reducing cell viability and inducing apoptosis in cancer cells, while showing minimal toxicity to normal human cells and brine shrimp, highlighting their potential as a safer alternative in cancer treatment.

Article Abstract

Silver nanoparticles (AgNPs) are superior cluster of nanomaterials that are recently recognized for their different applications in various pharmaceutical and clinical settings. The objective of this work deals with novel method for biosynthesis of AgNPs using Azadirachta indica (neem) leaf extract as reducing agent. These bio and chemical synthesized nanoparticles were characterized with the help of UV-vis Spectroscopy, Nanotarc, Dynamic light scattering (DLS), Zeta Potential (ZP), Transmission Electron Microscopy and Fourier transform infrared spectroscopy (FTIR). The obtained results from Nanotrac and TEM revealed that the synthesized AgNPs possess spherical shape with a mean diameter at 94nm for green and 104nm for chemical method, the zeta potential values was -12.02mV for green AgNPs and -10.4mV for chemical AgNPs. In addition, FT-IR measurement analysis was conceded out to identify the Ag ions reduced from the specific functional groups on the AgNPs, which increased the stability of the particles. Further, we compared the toxicities of green and chemical AgNPs against human skin dermal fibroblast (HDFa) and brine shrimp followed by anticancer activity in NCI-H460 cells. We observed green AgNPs cause dose-dependent decrease in cell viability and increase in reactive oxygen species (ROS) generation. Further, we proved to exhibit excellent cytotoxic effect and induction of cellular apoptosis in NCI-H460 cells. Furthermore, green AgNPs had no significant changes in cell viability, ROS production and apoptotic changes in HDFa cells. In contrary, we observed that the chemical AgNPs possess significant toxicities in HDFa cells. Hence, the green AgNPs were able to induce selective toxicity in cancer cells than the chemical AgNPs. Furthermore, green AgNPs exhibit less toxic effects against human red blood cells and brine shrimp (Artemia salina) nauplii than the chemical AgNPs. It was concluded, that apart from being superior over chemical AgNPs, the green AgNPs are effective and safer to the milieu as they show less toxic effect to normal cells and can be extensively applied in biomedical sciences particularly in cancer field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2016.09.003DOI Listing

Publication Analysis

Top Keywords

green agnps
24
chemical agnps
24
agnps
16
green
9
anticancer activity
8
silver nanoparticles
8
chemical
8
zeta potential
8
agnps possess
8
brine shrimp
8

Similar Publications

Multiple physiological response analyses of Chlorella vulgaris exposed to silver nanoparticles, ciprofloxacin, and their combination.

Environ Toxicol Chem

January 2025

Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.

The combination of silver nanoparticles (AgNPs) and ciprofloxacin (CIP) can be considered an alternative to combat multidrug-resistant microbial infections. However, knowledge about their combined toxicity is scarce after being released in an aquatic environment. The present study evaluated the individual toxicity of AgNPs and CIP and their combined toxicity on the unicellular green microalga Chlorella vulgaris, evaluating cellular responses and conducting metabolomic analysis.

View Article and Find Full Text PDF

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.

View Article and Find Full Text PDF

This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.

View Article and Find Full Text PDF

The spent black tea extract was utilized in order to synthesize the spent black tea silver nanoparticles (SBT-AgNPs). Various parameters were tested to yield the best production of SBT-AgNPs. The characterization was conducted by X-Ray diffraction, Scanning electron microscopy, Zeta potential and energy dispersive X-ray (EDX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!