Industry-academic partnerships: an approach to accelerate innovation.

J Surg Res

Department of Surgery, University of Utah, Salt Lake City, Utah; Center for Medical Innovation, University of Utah, Salt Lake City, Utah. Electronic address:

Published: September 2016

Background: Biotechnology companies are process-driven organizations and often struggle with their ability to innovate. Universities, on the other hand, thrive on discovery and variation as a source of innovation. As such, properly structured academic-industry partnerships in medical technology development may enhance and accelerate innovation. Through joint industry-academic efforts, our objective was to develop a technology aimed at global cervical cancer prevention.

Methods: Our Center for Medical Innovation assembled a multidisciplinary team of students, surgical residents, and clinical faculty to enter in the University of Utah's annual Bench-to-Bedside competition. Bench-to-Bedside is a university program centered on medical innovation. Teams are given access to university resources and are provided $500.00 for prototype development. Participation by team members are on a volunteer basis. Our industry partner presented the validated need and business mentorship. The team studied the therapeutic landscape, environmental constraints, and used simulation to understand human factors design and usage requirements. A physical device was manufactured by first creating a digital image (SOLIDWORKS 3D CAD). Then, using a 3-dimensional printer (Stratasys Objet30 Prime 3D printer), the image was translated into a physical object. Tissue burn depth analysis was performed on raw chicken breasts warmed to room temperature. Varying combinations of time and temperature were tested, and burn depth and diameter were measured 30 min after each trial. An arithmetic mean was calculated for each corresponding time and temperature combination. User comprehension of operation and sterilization was tested via a participant validation study. Clinical obstetricians and gynecologists were given explicit instructions on usage details and then asked to operate the device. Participant behaviors and questions were recorded.

Results: Our efforts resulted in a functional battery-powered hand-held thermocoagulation prototype in just 72 d. Total cost of development was <$500. Proof of concept trials at 100°C demonstrated an average ablated depth and diameter of 4.7 mm and 23.3 mm, respectively, corresponding to treatment efficacy of all grades of precancerous cervical lesions. User comprehension studies showed variable understanding with respect to operation and sterilization instructions.

Conclusions: Our experience with using industry-academic partnerships as a means to create medical technologies resulted in the rapid production of a low-cost device that could potentially serve as an integral piece of the "screen-and-treat" approach to premalignant cervical lesions as outlined by World Health Organization. This case study highlights the impact of accelerating medical advances through industry-academic partnership that leverages their combined resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2016.06.029DOI Listing

Publication Analysis

Top Keywords

accelerate innovation
8
medical innovation
8
burn depth
8
time temperature
8
innovation
5
industry-academic partnerships
4
partnerships approach
4
approach accelerate
4
innovation background
4
background biotechnology
4

Similar Publications

Data and AI-driven synthetic binding protein discovery.

Trends Pharmacol Sci

January 2025

School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, Chongqing 401329, China. Electronic address:

Synthetic binding proteins (SBPs) are a class of protein binders that are artificially created and do not exist naturally. Their broad applications in tackling challenges of research, diagnostics, and therapeutics have garnered significant interest. Traditional protein engineering is pivotal to the discovery of SBPs.

View Article and Find Full Text PDF

IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway.

Poult Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:

For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.

View Article and Find Full Text PDF

A Novel Protein NLRP12-119aa that Prevents Rhabdovirus Replication by Disrupting the RNP Complex Formation.

Adv Sci (Weinh)

January 2025

Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.

The accurate assembly of the ribonucleoprotein (RNP) complex is fundamental for the replication and transcription of rhabdoviruses, which are known for their broad pathogenic impact. A novel 119-amino-acid protein, NLRP12-119aa is identified, encoded by the circular RNA circNLRP12, that effectively disrupts the formation of rhabdovirus RNP complexes through two distinct mechanisms and significantly reduces their replication. NLRP12-119aa exhibits a strong affinity for the conserved 18-nucleotide sequence at the start of the leader RNA of rhabdoviruses VSV, SCRV, and RABV, outcompeting their native N protein interactions, thereby disrupting the assembly of RNP complexes and inhibiting viral replication.

View Article and Find Full Text PDF

Effect of catalase on CPC production during fermentation of Acremonium chrysogenum.

Bioresour Bioprocess

January 2025

Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.

Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer.

View Article and Find Full Text PDF

Meeting summary: Global vaccine and immunization research forum, 2023.

Vaccine

January 2025

Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA. Electronic address:

At the 2023 Global Vaccine and Immunization Research Forum (GVIRF), researchers from around the world gathered in the Republic of Korea to discuss advances and opportunities in vaccines and immunization. Many stakeholders are applying the lessons of Covid-19 to future emergencies, by advancing early-stage development of prototype vaccines to accelerate response to the next emerging infectious disease, and by building regional vaccine research, development, and manufacturing capacity to speed equitable access to vaccines in the next emergency. Recent vaccine licensures include: respiratory syncytial virus vaccines, both for the elderly and to protect infants through maternal immunization; a new dengue virus vaccine; and licensure of Covid-19 vaccines previously marketed under emergency use authorizations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!