Horizontal vectorization of electron repulsion integrals.

J Comput Chem

School of Computational Science and Engineering, Georgia Institute of Technology, 266 Ferst Drive, Atlanta, Georgia, 30332-0765.

Published: October 2016

We present an efficient implementation of the Obara-Saika algorithm for the computation of electron repulsion integrals that utilizes vector intrinsics to calculate several primitive integrals concurrently in a SIMD vector. Initial benchmarks display a 2-4 times speedup with AVX instructions over comparable scalar code, depending on the basis set. Speedup over scalar code is found to be sensitive to the level of contraction of the basis set, and is best for (lAlB|lClD) quartets when lD  = 0 or lB=lD=0, which makes such a vectorization scheme particularly suitable for density fitting. The basic Obara-Saika algorithm, how it is vectorized, and the performance bottlenecks are analyzed and discussed. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.24483DOI Listing

Publication Analysis

Top Keywords

electron repulsion
8
repulsion integrals
8
obara-saika algorithm
8
scalar code
8
basis set
8
horizontal vectorization
4
vectorization electron
4
integrals efficient
4
efficient implementation
4
implementation obara-saika
4

Similar Publications

Dative bonds are typically polar, weaker, and longer than electron-sharing covalent bonds. The intriguing diatomic BeF anion uniquely exhibits triple Be-F dative bonding with a considerable bond dissociation energy (BDE) of 88 kcal/mol. Here, we report exceptionally strong dative-bonded systems, [CO]BeF and [CO]BeF, with BDE values exceeding 155 kcal/mol by integrating [CO] and [CO] groups into the BeF framework.

View Article and Find Full Text PDF

Stack bonding in pentacene and its derivatives.

Phys Chem Chem Phys

January 2025

Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA.

Understanding the nature of π-stacking interactions is important to molecular recognition, self-assembly, and organic semiconductors. The stack bond order (SBO) model of π-stacking has shown that the conformations of dimers are found at orientations where the combinations of monomer MOs are overall bonding within the stack. DFT calculations show that parallel displaced minima found on the potential energy surface for the π-stacked dimers of pentacene and perfluoropentacene occur when the dimer MOs are constructed from combinations of monomer MOs with an allowed SBO.

View Article and Find Full Text PDF

Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear.

View Article and Find Full Text PDF

The efficient recovery of fine argentite from polymetallic lead-zinc (Pb-Zn) sulfide ore is challenging. This study investigated nanobubble (NB) adsorption on the argentite surface and its role in enhancing fine argentite flotation using various analytical techniques, including contact angle measurements, adsorption capacity analysis, infrared spectroscopy, zeta potential measurements, turbidity tests, microscopic imaging, scanning electron microscopy, and flotation experiments. Results indicated that the NBs exhibited long-term stability and were adsorbed onto the argentite surface, thereby enhancing surface hydrophobicity, reducing electrostatic repulsion between fine argentite particles, and promoting particle agglomeration.

View Article and Find Full Text PDF

Stereoactive Lone-Pair Manipulation for High Thermoelectric Performance of GeSe-Based Compounds.

ACS Appl Mater Interfaces

January 2025

Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.

Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!