Hydrodynamic size characterization of a self-emulsifying lipid pharmaceutical excipient by Taylor dispersion analysis with fluorescent detection.

Int J Pharm

Institut des Biomolécules Max Mousseron (IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Campus Triolet, Place Eugène Bataillon, CC 1706, 34095 Montpellier Cedex 5, France. Electronic address:

Published: November 2016

In this work, the sizing of microemulsion droplets of a lipid-based pharmaceutical excipient (Labrasol ALF) is performed by Taylor dispersion analysis (TDA) using fluorescent detection. An hydrophobic fluorescent marker is used to tag the microemulsion droplet and to increase the sensitivity of detection (compared to UV detection). Combined with the frontal TDA mode, fluorescent detection was mandatory for an accurate sizing of microemulsions containing large coacervates. Microemulsion sizing of Labrasol was performed at various concentrations from 1 to 70g.L and at two different temperature (25°C and 37°C). Results obtained by TDA are compared to those derived from DLS measurements. The combination of both techniques allows estimating the size and proportion of coacervates in the microemulsion, as well as the polydispersity in size of the sample.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.09.016DOI Listing

Publication Analysis

Top Keywords

fluorescent detection
12
pharmaceutical excipient
8
taylor dispersion
8
dispersion analysis
8
coacervates microemulsion
8
detection
5
hydrodynamic size
4
size characterization
4
characterization self-emulsifying
4
self-emulsifying lipid
4

Similar Publications

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!