In this study, two isoforms slc34a2 genes (type IIb sodium-dependent phosphate cotransporter), slc34a2a2 and slc34a2b, were cloned from intestine and kidney of yellow catfish (Pelteobagrus fulvidraco), with rapid amplification of cDNA ends. The structure differences and the regulation effects of dietary VD under low phosphorus were compared among three isoforms of slc34a2 in yellow catfish. The predicted Slc34a2a2 and Slc34a2b proteins match 65 % and 53.8 % sequence identity, with Slc34a2a1, respectively. The membrane-spanning domains were different among these three isoforms. Intestinal Slc34a2a1 and Slc34a2a2 proteins had eight and eleven transmembrane domains, while renal Slc34a2b protein had nine. The tissue distribution study showed that same as slc34a2a1, slc34a2a2 mRNA was mainly distributed in intestine and slc34a2b mRNA in kidney. The effect of vitamin D (VD) level on slc34a2 subfamily expression under low-phosphate conditions, induced by the addition of 0 (VD0), 324 (VD1), 1243 (VD2), 3621 (VD3), 8040 (VD4), or 22700 (VD5) IU VD/kg feed, was assessed by qPCR. The dose-responsive expression of intestinal slc34a2a2 and high expression of intestinal slc34a2a2 in VD5 together with peak expression of kidney slc34a2b in VD3 coincided with the accumulation of body phosphate content. These data suggested that appropriate level of dietary VD up-regulated slc34a2a1, slc34a2a2, and slc34a2b mRNA levels, which increased phosphate retention. In conclusion, the current study provided another possible approach to improve dietary phosphate utilization by adding appropriate level of VD to a low-phosphate diet to regulate intestinal and renal slc34a2 gene expression and thus minimize the excretion of phosphorus in yellow catfish.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-016-0282-7DOI Listing

Publication Analysis

Top Keywords

yellow catfish
16
slc34a2a2 slc34a2b
12
slc34a2a1 slc34a2a2
12
type iib
8
iib sodium-dependent
8
sodium-dependent phosphate
8
phosphate cotransporter
8
slc34a2 yellow
8
catfish pelteobagrus
8
pelteobagrus fulvidraco
8

Similar Publications

Hybrid yellow catfish (Tachysurus fulvidraco♀ × Tachysurus vachelli♂) is a significant aquaculture variety in China. It is easy to be infected by trichodinids, causing serious economic losses. However, the species investigation of trichodinids on hybrid yellow catfish is relatively deficient, which seriously hinders the prevention and control of trichodiniasis.

View Article and Find Full Text PDF

A chromosome-level genome assembly of the male darkbarbel catfish (Pelteobagrus vachelli) using PacBio HiFi and Hi-C data.

Sci Data

February 2025

Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.

The darkbarbel catfish (Pelteobagrus vachelli), a species of significant economic value in China's aquaculture sector, is widely utilized in hybrid yellow catfish production due to its exceptional growth rate. The growth rate of male P. vachelli is significantly higher compared to females, making all-male breeding a promising market opportunity.

View Article and Find Full Text PDF

Glycinin-induced foodborne enteritis is a significant obstacle that hinders the healthy development of the aquatic industry. Glycinin causes growth retardation and intestinal damage in hybrid yellow catfish ( ♀ × ♂), but its immune mechanisms are largely unknown. In the current study, five experimental diets containing 0% (CK), 1.

View Article and Find Full Text PDF

Expression profiles of NOD1 and NOD2 and pathological changes in gills during Flavobacterium columnare infection in yellow catfish, Tachysurus fulvidraco.

J Fish Biol

January 2025

Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.

NOD-like receptors are significant contributors to the immune response of fish against different types of pathogen invasion. NOD1 and NOD2 genes of yellow catfish (Tachysurus fulvidraco) were identified and characterized in this study. Yellow catfish NOD1 and NOD2 have open reading frames (ORFs) of 2841 and 2949 bp, encoding 946 and 982 amino acids, respectively.

View Article and Find Full Text PDF

CircArid4b: A novel circular RNA regulating antibacterial response during hypoxic stress via apoptosis in yellow catfish (Pelteobagrus fulvidraco).

Comp Biochem Physiol C Toxicol Pharmacol

March 2025

Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China. Electronic address:

The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!