Vascular endothelial growth factor-A (VEGF-A) is essential for endothelial cell functions associated with angiogenesis. Signal transduction networks initiated by VEGFA/VEGFR2, the most prominent ligand-receptor complex in the VEGF system, leads to endothelial cell proliferation, migration, survival and new vessel formation involved in angiogenesis. Considering its biomedical importance, we have developed the first comprehensive map of endothelial cell-specific signaling events of VEGFA/VEGFR2 system pertaining to angiogenesis. Screening over 20,000 published research articles and following the post-translational modification (PTM) and site specificity of VEGFR2, we have documented 240 proteins and their diverse PTM-dependent reactions involved in VEGFA/VEGFR2 signal transduction. From the ligand-receptor complex, this map has been extended to the level of major transcriptionally regulated genes for which the signaling cascades leading to their transcription factors are reported. We believe that this map would serve as a novel platform for reference, integration, and representation and more significantly, the progressive analysis of dynamic features of VEGF signaling in endothelial cells including their cross-talks with other ligand-receptor systems involved in angiogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143324 | PMC |
http://dx.doi.org/10.1007/s12079-016-0352-8 | DOI Listing |
ACS Nano
January 2025
Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China.
Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.
View Article and Find Full Text PDFPurpose: We aimed to investigate the role of gallic acid treatment on spinal cord tissues after spinal cord injury (SCI) and its relationship with endoplasmic reticulum (ER) stress by histochemical, immunohistochemical, and in-silico techniques.
Methods: Thirty female Wistar albino rats were divided into three groups: sham, SCI, and SCI+gallic acid. SCI was induced by dropping a 15-g weight onto the exposed T10-T11 spinal cord segment.
Sci Adv
January 2025
College of Chemistry, Fuzhou University, Fuzhou 350116, China.
The angiopoietin (Ang)-Tie axis, critical for endothelial cell function and vascular development, is a promising therapeutic target for treating vascular disorders and inflammatory conditions like sepsis. This study aimed to enhance the binding affinity of recombinant Ang1 variants to the Tie2 and explore their therapeutic potential. Structural insights from the Ang1-Tie2 complex enabled the identification of key residues within the Ang1 receptor binding domain (RBD) critical for Tie2 interaction.
View Article and Find Full Text PDFLaryngocutaneous fistula is one of the most important complications encountered after larynx surgery. Stem cell therapy is a promising treatment approach for the future, both without the need for surgical methods and by assisting surgical methods to close the fistula. 30 female Downey Sprague rats were divided into 5 separate groups and pharyngocutaneous fistula was created.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.
Background And Purpose: Endothelial dysfunction is considered an emerging therapeutic target to prevent complications during acute stroke and to prevent recurrent stroke. This review aims to provide an overview of the current knowledge on endothelial dysfunction, outline the diagnostic methods used to measure it and highlight the drugs currently being investigated for the treatment of endothelial dysfunction in acute ischemic stroke.
Methods: The PubMed® and ClinicalTrials.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!