Bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited to primary tumours to compose the tumour microenvironment. In various cancers, CD133-positive cells have been shown to possess cancer stem cell properties that confer chemoresistance. This study aimed to investigate the role of BM-MSCs in the anti-tumour drug resistance of CD133-expressing gastric cancer cells and explore the underlying mechanisms that governing this role. We found that CD133 gastric cancer cells displayed more resistance to chemotherapeutics than CD133 cells. In addition, BM-MSCs increased the anti-apoptotic abilities and chemoresistance of CD133 cells via upregulation of Bcl-2 and downregulation of BAX. Mechanistically, BM-MSCs triggered activation of the PI3K/Akt signalling cascade in CD133 cells. Blocking the PI3K/Akt pathway inhibited the promotion of chemoresistance. Furthermore, BM-MSCs enhanced the drug resistance of CD133-overexpressing cells in vitro and in vivo, but not that of CD133-knockdown cells, which demonstrated the contribution of CD133 to this process. In conclusion, we demonstrated that BM-MSCs increased the anti-apoptotic abilities and drug resistance of CD133-expressing cells via activation of the PI3K/Akt pathway following Bcl-2 upregulation and BAX downregulation, in which CD133 played a significant role. Targeting this route may help improve the efficacy of chemotherapy in gastric cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13277-016-5319-0 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China.
Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).
View Article and Find Full Text PDFMol Oncol
January 2025
Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada.
Patient stratification remains a challenge for optimal treatment of prostate cancer (PCa). This clinical heterogeneity implies intra-tumoural heterogeneity, with different prostate epithelial cell subtypes not all targeted by current treatments. We reported that such cell subtypes are traceable in liquid biopsies through representative transcripts.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
Idiopathic epilepsy (IE) is the most common neurological disease in dogs. Approximately 1/3 of dogs with IE are resistant to anti-seizure medications (ASMs). Because the diagnosis of IE is largely based on the exclusion of other diseases, it would be beneficial to indicate an IE biomarker to better understand, diagnose, and treat this disease.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
From a One Health perspective, dogs and cats have begun to be recognized as important reservoirs for clinically significant multidrug-resistant bacterial pathogens. In this study, we investigated the occurrence and genomic features of ESβL producing Enterobacterales isolated from dogs, in the province of Imbabura, Ecuador. We identified four isolates expressing ESβLs from healthy and diseased animals.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Rehabilitation Medicine, The Fifth People's Hospital of Chongqing, Chongqing, China.
Background: Mitochondria, as the energy factories of cells, are involved in a wide range of vital activities, including cell differentiation, signal transduction, the cell cycle, and apoptosis, while also regulating cell growth. However, current pharmacological treatments for stroke are challenged by issues such as drug resistance and side effects, necessitating the exploration of new therapeutic strategies.
Objective: This review aims to summarize the regulatory effects of natural compounds targeting mitochondria on neuronal mitochondrial function and metabolism, providing new perspectives for stroke treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!