Advancing In Vitro-In Vivo Extrapolations of Mechanism-Specific Toxicity Data Through Toxicokinetic Modeling.

Adv Biochem Eng Biotechnol

Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.

Published: September 2017

International legislation, such as the European REACH regulation (registration, evaluation, authorization, and restriction of chemicals), mandates the assessment of potential risks of an ever-growing number of chemicals to the environment and human health. Although this legislation is considered one of the most important investments in consumer safety ever, the downside is that the current testing strategies within REACH rely on extensive animal testing. To address the ethical conflicts arising from these increased testing requirements, decision-makers, such as the European Chemicals Agency (ECHA), are committed to Russel and Burch's 3R principle (i.e., reduction, replacement, refinement) by demanding that animal experiments should be substituted with appropriate alternatives whenever possible. A potential solution of this dilemma might be the application of in vitro bioassays to estimate toxic effects using cells or cellular components instead of whole organisms. Although such assays are particularly useful to assess potential mechanisms of toxic action, scientists require appropriate methods to extrapolate results from the in vitro level to the situation in vivo. Toxicokinetic models are a straightforward means of bridging this gap. The present chapter describes different available options for in vitro-in vivo extrapolation (IVIVE) of mechanism-specific effects focused on fish species and also reviews the implications of confounding factors during the conduction of in vitro bioassays and their influence on the optimal choice of different dose metrics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/10_2015_5015DOI Listing

Publication Analysis

Top Keywords

vitro-in vivo
8
vitro bioassays
8
advancing vitro-in
4
vivo extrapolations
4
extrapolations mechanism-specific
4
mechanism-specific toxicity
4
toxicity data
4
data toxicokinetic
4
toxicokinetic modeling
4
modeling international
4

Similar Publications

Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs.

View Article and Find Full Text PDF

In silico approaches for developing sesquiterpene derivatives as antagonists of human nicotinic acetylcholine receptors (nAChRs) for nicotine addiction treatment.

Curr Res Struct Biol

June 2025

Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia.

Cinnamomum, a genus within the Lauraceae family, has gained global recognition due to its wide-ranging utility. Extensive research has been dedicated to exploring its phytochemical composition and pharmacological effects. Notably, the uniqueness of Cinnamomum lies in its terpenoid content, characterized by distinctive structures and significant biological implications.

View Article and Find Full Text PDF

Acquired vulnerability against EGF receptor inhibition in gastric cancer promoted by class I histone deacetylase inhibitor entinostat.

Neoplasia

January 2025

Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena. Electronic address:

Introduction: Histone deacetylase inhibitors (HDACi) have shown promising preclinical activity in gastric cancer cells; unfortunately, however, these could not be confirmed in clinical trials. This highlights the need for the identification of underlying reasons, which may also provide the basis for possible combination therapies. Here, we delineated the effects of HDACi on components of EGFR signalling in gastric cancer cells.

View Article and Find Full Text PDF

Airborne particulate matter inhalation bioaccessibility: A review of methodological aspects.

Chem Biol Interact

January 2025

Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:

Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increased attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects.

View Article and Find Full Text PDF

Selection of In Vivo Relevant Dissolution Test Parameters for the Development of Cannabidiol Formulations with Enhanced Oral Bioavailability.

Pharmaceutics

January 2025

Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium.

Cannabidiol (CBD) shows interesting therapeutic properties but has yet to demonstrate its full potential in clinical trials partly due to its low solubility in physiologic media. Two different formulations of CBD (amorphous and lipid-based) have been optimized and enable an increase in bioavailability in piglets. In vivo studies are time-consuming, costly and life-threatening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!