Pore size matters for potassium channel conductance.

J Gen Physiol

Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago 8370146, Chile Fraunhofer Chile Research, Las Condes 7550296, Chile

Published: October 2016

Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K(+) channels discriminate K(+) over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K(+) channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K(+) channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K(+) channels, accounting for their diversity in unitary conductance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037345PMC
http://dx.doi.org/10.1085/jgp.201611625DOI Listing

Publication Analysis

Top Keywords

ion transport
12
unitary conductance
8
small-conductance channels
8
channels
6
pore size
4
size matters
4
matters potassium
4
potassium channel
4
channel conductance
4
ion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!