Exploiting Gene Expression Kinetics in Conventional Radiotherapy, Hyperfractionation, and Hypofractionation for Targeted Therapy.

Semin Radiat Oncol

Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD.

Published: October 2016

The dramatic changes in the technological delivery of radiation therapy, the repertoire of molecular targets for which pathway inhibitors are available, and the cellular and immunologic responses that can alter long-term clinical outcome provide a potentially unique role for using the radiation-inducible changes as therapeutic targets. Various mathematical models of dose and fractionation are extraordinarily useful in guiding treatment regimens. However, although the model may fit the clinical outcome, a deeper understanding of the molecular and cellular effect of the individual dose size and the adaptation to repeated exposure, called multifraction (MF) adaptation, may provide new therapeutic targets for use in combined modality treatments using radiochemotherapy and radioimmunotherapy. We discuss the potential of using different radiation doses and MF adaptation for targeting transcription factors, immune and inflammatory response, and cell "stemness." Given the complex genetic composition of tumors before treatment and their adaptation to drug treatment, innovative combinations using both the pretreatment molecular data and also the MF-adaptive response to radiation may provide an important role for focused radiation therapy as an integral part of precision medicine and immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023066PMC
http://dx.doi.org/10.1016/j.semradonc.2016.07.001DOI Listing

Publication Analysis

Top Keywords

radiation therapy
8
clinical outcome
8
therapeutic targets
8
exploiting gene
4
gene expression
4
expression kinetics
4
kinetics conventional
4
conventional radiotherapy
4
radiotherapy hyperfractionation
4
hyperfractionation hypofractionation
4

Similar Publications

Cancer-associated fibroblast-derived exosomal FAM83F regulates KIF23 expression to promote the malignant progression and reduce radiosensitivity in non-small cell lung cancer.

Cytotechnology

April 2025

Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing University Cancer Hospital, Chongqing, 400030 China.

Unlabelled: Cancer-associated fibroblasts (CAFs) have been shown to play a crucial role in the progression of non-small cell lung cancer (NSCLC). Exosomes derived from CAFs have emerged as important mediators of intercellular communication in the tumor microenvironment, contributing to cancer progression. Therefore, it is essential to further investigate the mechanisms by which CAF-derived exosomes regulate NSCLC.

View Article and Find Full Text PDF

Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential.

View Article and Find Full Text PDF

Objective: To evaluate the efficacy of supra-inguinal fascia iliaca compartment block (S-FICB) in patients undergoing proximal femoral nail antirotation (PFNA) internal fixation surgery for intertrochanteric fracture (ITF).

Methods: Retrospective analysis of 95 patients with ITF undergoing PFNA internal fixation surgery in the First People's Hospital of Yong Kang from March 2021 to August 2023 was performed. Among them, 49 patients received general anesthesia (GA; GA group) and 46 patients received S-FICB combined with general anesthesia (S-FICB group).

View Article and Find Full Text PDF

Cardiorespiratory-gated cardiac proton radiotherapy using a novel ultrasound guidance system.

Clin Transl Radiat Oncol

March 2025

Smilow Center for Translational Research, Room 8-136, Univ of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104, USA.

Cardiac stereotactic body radiotherapy is a promising noninvasive treatment for patients with refractory ventricular tachycardia. With the aim to prove feasibility of a novel image guided radiotherapy and heart motion gating device, cardiac proton radiotherapy was performed using a porcine model. Using a novel adaptation of γ - H2AX tissue staining techniques, we have been able to localize a radiation beam in large animal tissue to assess targeting accuracy within a defined field.

View Article and Find Full Text PDF

Aim: This study leveraged standard-of-care CT scans of patients receiving unilateral radiotherapy (RT) for early tonsillar cancer to detect volumetric changes in the carotid arteries, and determine whether there is a dose-response relationship.

Methods: Disease-free cancer survivors (>3 months since therapy and age > 18 years) treated with intensity modulated RT for early (T1-2, N0-2b) tonsillar cancer with pre- and post-therapy contrast-enhanced CT scans available were included. Patients treated with definitive surgery, bilateral RT, or additional RT before the post-RT CT scan were excluded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!