The fluorescence properties of two new families of heterocycles possessing either a seven- or five-membered ring attached at the core molecule are entirely different in solution and in the solid state. Crystallization has the effect of inhibiting non-radiative excited-state deactivation pathways, operative in solution for the seven-membered ring compounds, thus leading to significant fluorescence efficiency in the solid state, with quantum yields ranging from 0.10 to 0.36. Conversely, the five-membered ring derivatives, which display notable emission properties in solution, are almost non-emissive in the crystalline state, characterized by a long-range π-stacked arrangement. When embedded in polymeric films, both series show fluorescence features similar to the solution case, with remarkable fluorescence quantum yields ranging from 0.09 to 0.41. According to quantum chemical calculations, 3H-chromeno[3,4-c]pyridine-4,5-diones show the specific mechanism of fluorescence quenching. The derivatives bearing the seven-membered ring undergo, in solution, a significant structural deformation in the excited state, resulting in a large decrease of the energy gap between S and S and hence to a substantial contribution of the internal conversion in the relaxation process. The fluorescence quenching of the five-membered ring derivatives is in turn related to the intermolecular interaction between adjacent molecules prevailing to a greater extent in the crystal lattice.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201603038DOI Listing

Publication Analysis

Top Keywords

five-membered ring
12
solid state
8
seven-membered ring
8
quantum yields
8
yields ranging
8
ring derivatives
8
fluorescence quenching
8
fluorescence
6
ring
5
solution
5

Similar Publications

Azaaurones are formed by the replacement of intra-cyclic oxygen of the central core of a five-membered furan ring or any other carbon of aurones by a nitrogen atom. However, 1- azaaurone obtained by the replacement of intra-cyclic oxygen is the most prominent and desirable. They are the bioactive compounds acting as potential anti-inflammatory, anticancer, antibacterial, and antiviral agents.

View Article and Find Full Text PDF

Background: Owing to their extensive utilization as pesticides, heterocycles assume a fundamental role in the management of vector-borne diseases. Despite the presence of numerous heterocyclic compounds in commercial insecticides and larvicides, resistance to pesticides still demands novel strategies to current pest control methods. Considering these facts, this review aims to survey the synthesis and SAR of heterocyclic molecules with larvicidal activity against Aedes aegypti Linn.

View Article and Find Full Text PDF

The five-membered oxazole motif heterocyclic aromatic ring has been gaining considerable attention due to its bioisosterism property and unusually wide range of desired biological properties. Thus, it is a perfect pre-built platform for the discovery of new scaffold development in medicinal chemistry. In recent years, the potential of oxazoles has garnered significant attention from medicinal chemists, resulting in the development of several synthetic and plant-based drugs currently in the market.

View Article and Find Full Text PDF

Pyrazoles are an important class of five-membered nitrogen heterocyclic compounds that have been widely used in agriculture and medicine. Exploring their synthesis methods under mild conditions has always been a hot research topic. Herein, a new strategy was developed to enhance the activity of a zirconium metal centre for the synthesis of -acylpyrazole derivatives using CpZrCl as a pre-catalyst.

View Article and Find Full Text PDF

Three seco-norabietane diterpenoids, salvicsites A-C (-), along with two known compounds, were isolated from the roots and rhizomes of Diels f. Stib. Salvicsite A () represents an unprecedented structural combination, featuring an eight-membered α-methyl-α,β-unsaturated lactone ring and a five-membered α,β-unsaturated lactone ring, based on a 6/6/5/8 ring system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!