Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite the effects on physiology of bone marrow mesenchymal stem cells (BMSCs) and bone tissue, biological signal communication between bone implants and them is seldom employed as a guidance to create an osteo-inductive interface. Herein, the positively-charged surface is constructed on bone implant from the perspective of mediation of nitric oxide synthase (NOS) expression to signal BMSCs osteo-differentiation. In vitro and in vivo results indicate that the proper surface potential on the positively-charged surface affects NOS to express a high level of inducible nitric oxide synthase (iNOS) in three NOS isoforms of the contacted BMSCs, upregulates their osteogenetic expression, and ultimately foster new bone growth. However, an excessively high surface potential produces substantial immunomodulatory effects thereby offsetting the aforementioned advantages. This study demonstrates that fine-tuning of the positively-charged surface and proper utilization of the communication between NOS and bone implants promote bone formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2016.08.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!