Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules.

J Sep Sci

Australian Centre for Research on Separation Science (ACROSS), Centre for Green Chemistry, Monash University, Melbourne, Australia.

Published: January 2017

This review describes recent advances associated with the development of surface imprinting methods for the synthesis of polymeric membranes and thin films, which possess the capability to selectively and specifically recognize biomacromolecules, such as proteins and single- and double-stranded DNA, employing "epitope" or "whole molecule" approaches. Synthetic procedures to create different molecularly imprinted polymer membranes or thin films are discussed, including grafting/in situ polymerization, drop-, dip-, or spin-coating procedures, electropolymerization as well as micro-contact or stamp lithography imprinting methods. Highly sensitive techniques for surface characterization and analyte detection are described, encompassing luminescence and fluorescence spectroscopy, X-ray photoelectron spectroscopy, FTIR spectroscopy, surface-enhanced Raman spectroscopy, atomic force microscopy, quartz crystal microbalance analysis, cyclic voltammetry, and surface plasmon resonance. These developments are providing new avenues to produce bioelectronic sensors and new ways to explore through advanced separation science procedures complex phenomena associated with the origins of biorecognition in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201600849DOI Listing

Publication Analysis

Top Keywords

membranes thin
12
thin films
12
molecularly imprinted
8
imprinted polymer
8
polymer membranes
8
imprinting methods
8
films separation
4
separation sensing
4
sensing biomacromolecules
4
biomacromolecules review
4

Similar Publications

Background: Alport syndrome (AS) is a multifaceted condition that primarily affects the basement membranes of the kidneys, ears, and eyes. AS is considered the second most common cause of hereditary renal failure, exhibiting varied clinical manifestations across different lifespans. The aim of this study is to investigate the clinical features and genetic profile of AS and to elucidate the genotype-phenotype correlation of AS.

View Article and Find Full Text PDF

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes.

Beilstein J Nanotechnol

December 2024

Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia.

Endosomal entrapment significantly limits the efficacy of drug delivery systems. This study investigates sodium oleate-modified liposomes (SO-Lipo) as an innovative strategy to enhance endosomal escape and improve cytosolic delivery in 4T1 triple-negative breast cancer cells. We aimed to elucidate the mechanistic role of sodium oleate in promoting endosomal escape and compared the performance of SO-Lipo with unmodified liposomes (Unmodified-Lipo) and Aurein 1.

View Article and Find Full Text PDF

Unlabelled: Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed.

View Article and Find Full Text PDF

The polyvinyl alcohol/chitosan (PVA/CS) thin film membrane was modified using a deep eutectic solvent (DES) to enhance its adsorption capability and mechanical strength for the removal of brilliant green (BG) dye. Batch adsorption experiments, machine learning (ML) modeling, and density functional theory (DFT) analyses were performed to evaluate the adsorption of BG using PVA/CS and DES-modified PVA/CS (DES/PVA/CS) membranes. Incorporating DES (5 wt%) into the PVA/CS membrane increased its elongation at break from 8.

View Article and Find Full Text PDF

Influence of the wet-ear state on the outcomes of tympanic membrane repair under ear endoscopy: a prospective case-control study.

BMC Surg

January 2025

Department of Otolaryngology-Head and Neck Surgery, Zhangqiu People's Hospital, No.1920 Mingshui Huiquan Road, Zhangqiu Distict, Jinan, 250200, People's Republic of China.

Background: To prospectively determine whether tympanoplasty for tympanic membrane perforation (TMP) in wet ears impacts recovery.

Methods: We prospectively enrolled 32 TMP patients (2021-2023) and divided them into the wet-ear (14 patients) and dry-ear groups (18 patients), according to the presence of middle-ear secretions/edema. All patients underwent high-resolution thin-slice computed tomography, ear endoscopy, and pure tone audiometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!