The maintenance and modulation of cutaneous mast cell (MC) numbers is held to be important for skin immune responses to allergens and pathogens. The increase in MC numbers in the skin is achieved by proliferation and the differentiation of precursor to mature MCs. Fibroblast-derived SCF is thought to be the major skin MC growth factor and it potently induces MC proliferation. The mechanisms of fibroblast-induced skin MC differentiation, including the role of SCF, however, remain insufficiently characterized and understood. Using cocultures of immature murine MCs and fibroblasts, we found that the adhesion of immature MCs to fibroblasts via VCAM-1 and α β integrin is very important for subsequent differentiation, which is driven by fibroblast membrane-bound SCF and additional fibroblast-derived membrane-bound signals. Thus, our results show that fibroblast-induced MC differentiation is induced by direct cell-cell contact and involves both Kit-dependent and Kit-independent pathways. Our findings add to the understanding of how immature mast cells mature in murine skin and encourage further analyses of the underlying mechanisms, which may result in novel targets for the modulation of skin mast cell driven diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.13206DOI Listing

Publication Analysis

Top Keywords

mast cell
12
murine skin
8
skin mast
8
mcs fibroblasts
8
skin
7
differentiation
5
membrane-bound stem
4
cell
4
stem cell
4
cell factor
4

Similar Publications

Oral vancomycin induced flushing syndrome in a multiple myeloma patient: A case report and review of the literature.

Medicine (Baltimore)

November 2024

Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Background: Patients with hematological malignancies are at high-risk of Clostridium difficile infection (CDI). Oral vancomycin is a first-line treatment for CDI. Vancomycin has been widely reported to induce flushing syndrome (also known as Red man syndrome), a well-known hypersensitivity reaction mostly occurs after intravenous administration.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a multifaceted inflammatory skin condition characterized by the involvement of various cell types, such as keratinocytes, macrophages, neutrophils, and mast cells. Research indicates that flavonoids possess anti-inflammatory properties that may be beneficial in the management of AD. However, the investigation of the glycoside forms for anti-AD therapy is limited.

View Article and Find Full Text PDF

Background: Saidi sheep are one of the most important farm animals in Upper Egypt, particularly in the Assiut governorate. Since they can provide meat, milk, fiber, and skins from low-quality roughages, sheep are among the most economically valuable animals bred for food in Egypt. Regarding breeding, relatively little is known about the Saidi breed.

View Article and Find Full Text PDF

Dissecting SNARE-Mediated Exocytosis in RBL-2H3 Mast Cells.

Methods Mol Biol

January 2025

Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.

SNARE-dependent mast cell (MC) exocytosis causes the release of a wide variety of mediators with important physiological/pathological consequences. Unlike synaptic transmission in the brain, which relies primarily on one set of exocytic SNAREs (i.e.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by intestinal inflammation and autoimmune responses. This study aimed to identify diagnostic biomarkers for UC through bioinformatics analysis and machine learning, and to validate these findings through immunofluorescence staining of clinical samples. Differential expression analysis was conducted on expression profile datasets from 4 UC samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!