In mouse models of Huntington's disease (HD), striatal neuron properties are significantly altered. These alterations predict changes in striatal output regions. However, little is known about alterations in those regions. The present study examines changes in passive and active membrane properties of neurons in the external globus pallidus (GPe), the first relay station of the indirect pathway, in the R6/2 mouse model of juvenile HD at presymptomatic (1 month) and symptomatic (2 month) stages. In GPe, two principal types of neurons can be distinguished based on firing properties and the presence (type A) or absence (type B) of I currents. In symptomatic animals (2 month), cell membrane capacitance and input resistance of type A neurons were increased compared with controls. In addition, action potential afterhyperpolarization amplitude was reduced. Although the spontaneous firing rate of GPe neurons was not different between control and R6/2 mice, the number of spikes evoked by depolarizing current pulses was significantly reduced in symptomatic R6/2 animals. In addition, these changes were accompanied by altered firing patterns evidenced by increased interspike interval variation and increased number of bursts. Blockade of GABA receptors facilitated bursting activity in R6/2 mice but not in control littermates. Thus, alterations in firing patterns could be caused by changes in intrinsic membrane conductances and modulated by synaptic inputs. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069159 | PMC |
http://dx.doi.org/10.1002/jnr.23889 | DOI Listing |
Sci Prog
January 2025
National Fire Research Institute, Asan-si, Republic of Korea.
Firefighters are exposed to the risk of burns at fire scenes. In 2020, the National Fire Agency of the Republic of Korea surveyed 50,527 firefighters and identified 242 burn-related incidents. The body parts affected by these burns were the hands (28.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Southern Research Station, US Forest Service, 320 Green Street, Athens, GA 30602, USA.
Wildfires are growing in destructive power, and accurately predicting the spread and intensity of wildland fire is essential for managing ecological and societal impacts. No current operational models used for fire behavior prediction resolve critical fire-atmospheric coupling or nonlocal influences of the fire environment, rendering them inadequate in accounting for the range of wildland fire behavior scenarios under increasingly novel fuel and climate conditions. Here, we present a new perspective on a dominant fire-atmospheric feedback mechanism, which we term wildland fire entrainment (WFE).
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany.
Introduction: This study investigated potential health status differences among forging, manufacturing, and logistics workers.
Methods: We included 403 participants (age: 41 ± 12 years) from a medium-sized steel company (forge: 64, manufacturing: 299, logistics: 99). Health status was multifactorial assessed: (1) Frequency of musculoskeletal complaints (German Pain Questionnaire).
Sci Rep
January 2025
Department of Neurobiology, Poznan University of Physical Education, Poznan, Poland.
Previously, boost and sag effects seen in unfused tetanic contractions have been studied exclusively at constant stimulation frequency. However, intervals between successive discharges of motoneurons vary during voluntary movements. We therefore aimed to test whether the extra-efficient force production at the onset of contraction (boost) occurs during stimulation with variable intervals, and to what extent it depends on the level of interpulse interval (IPI) variability and history of stimulation.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Bioscience, University of Oslo, Oslo, Norway.
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!