Enteric methane (CH ₄ ) is a by-product from fermentation of feed consumed by ruminants, which represents a nutritional loss and is also considered a contributor to climate change. The aim of this research was to use individual animal data from 17 published experiments that included sheep ( n = 288), beef cattle ( n = 71) and dairy cows ( n = 284) to develop an empirical model to describe enteric CH ₄ emissions from both cattle and sheep, and then evaluate the model alongside equations from the literature. Data were obtained from studies in the United Kingdom (UK) and Australia, which measured enteric CH ₄ emissions from individual animals in calorimeters. Animals were either fed solely forage or a mixed ration of forage with a compound feed. The feed intake of sheep was restricted to a maintenance amount of 875 g of DM per day (maintenance level), whereas beef cattle and dairy cows were fed to meet their metabolizable energy (ME) requirement (i.e., production level). A linear mixed model approach was used to develop a multiple linear regression model to predict an individual animal's CH ₄ yield (g CH ₄ /kg dry matter intake) from the composition of its diet. The diet components that had significant effects on CH ₄ yield were digestible organic matter (DOMD), ether extract (EE) (both g/kg DM) and feeding level above maintenance intake: CH ₄ (g/kg DM intake) = 0.046 (±0.001) × DOMD - 0.113 (±0.023) × EE - 2.47 (±0.29) × (feeding level - 1), with concordance correlation coefficient ( CCC ) = 0.655 and RMSPE = 14.0%. The predictive ability of the model developed was as reliable as other models assessed from the literature. These components can be used to predict effects of diet composition on enteric CH ₄ yield from sheep, beef and dairy cattle from feed analysis information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035949 | PMC |
http://dx.doi.org/10.3390/ani6090054 | DOI Listing |
Molecules
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
Phosphate has been widely used in beef to improve processing characteristics such as tenderness and water-holding capacity. However, the effects of phosphates on the quality and especially the flavor of beef are not well understood. This study investigated the influence of eight different phosphate marinade solutions on the quality and flavor of prepared beef.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China.
Polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2, n-6) and α-linolenic acid (18:3, n-3) are essential for the growth, development, and well-being of mammals. However, most mammals, including humans, cannot synthesize n-3 and n-6 PUFAs and these must be obtained through diet. The beneficial effect of converting n-6 polyunsaturated fatty acids (n-6 PUFAs) into n-3 polyunsaturated fatty acids (n-3 PUFAs) has led to extensive research on the flax fatty acid desaturase 3 () gene, which encodes fatty acid desaturase.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
Yaks are a rare and unique animal species inhabiting the Qinghai-Tibet Plateau; they are renowned for their remarkable ability to thrive in harsh environments. Milk-derived exosomes, tiny vesicles containing various biological molecules, play crucial roles in numerous pathological and physiological processes, including cell growth, development, and immune regulation. This study delved into the microRNA expression profiles of yak milk-derived exosomes collected from both high- and low-altitude populations using small RNA sequencing.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The genetic improvement of beef cattle breeds is crucial for the advancement of the beef cattle industry. Whole-genome resequencing technology has been widely applied in genetic breeding as well as research on selection signatures in beef cattle. In this study, 20× whole-genome resequencing was performed on 282 Angus cattle from the Ningxia region, and a high-quality dataset encompassing extensive genomic variations across the entire genome was constructed.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
In intensive beef production systems, social dominance relationships among cattle and human-cattle relationships constantly affect cattle welfare. However, these factors have not been investigated to assess their long-term effects on cattle welfare. In this study, the relations of hair cortisol concentrations of group-housed pregnant cows with their social rank and avoidance distance when approached by humans were analysed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!