Many flaviviruses are significant human pathogens that are transmitted by mosquitoes and ticks. Although effective vaccines are available for yellow fever virus, Japanese encephalitic virus, and tick-borne encephalitis virus, these and other flaviviruses still cause thousands of human deaths and millions of illnesses each year. No clinically approved antiviral therapy is available for flavivirus treatment. To meet this unmet medical need, industry and academia have taken multiple approaches to develop antiflavivirus therapy, among which targeting viral entry has been actively pursued in the past decade. Here we review the current knowledge of flavivirus entry and its use for small molecule drug discovery. Inhibitors of two major steps of flaviviral entry have been reported: (i) molecules that block virus-receptor interaction; (ii) compounds that prevent conformational change of viral envelope protein during virus-host membrane fusion. We also discuss the advantages and disadvantages of targeting viral entry for treatment of flavivirus infection as compared to targeting viral replication proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.5b00066 | DOI Listing |
Nat Struct Mol Biol
January 2025
Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany.
Human immunodeficiency virus-1 (HIV-1) uses a number of strategies to modulate viral and host gene expression during its life cycle. To characterize the transcriptional and translational landscape of HIV-1 infected cells, we used a combination of ribosome profiling, disome sequencing and RNA sequencing. We show that HIV-1 messenger RNAs are efficiently translated at all stages of infection, despite evidence for a substantial decrease in the translational efficiency of host genes that are implicated in host cell translation.
View Article and Find Full Text PDFCommun Biol
January 2025
Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice.
View Article and Find Full Text PDFNat Microbiol
January 2025
State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.
View Article and Find Full Text PDFNat Chem Biol
January 2025
State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany.
Zygotic genome activation (ZGA) is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In humans, ZGA is induced by DUX4, a pioneer factor that drives expression of downstream germline-specific genes and retroelements. Here we show that herpesviruses from all subfamilies, papillomaviruses and Merkel cell polyomavirus actively induce DUX4 expression to promote viral transcription and replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!