Bilineal Acute Leukemia Associated With Fanconi Syndrome: The First Case Report.

Iran J Pediatr

Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, IR Iran.

Published: June 2016

Fanconi syndrome is a metabolic disorder involving dysfunction of the renal proximal tubules, resulting in excessive urinary excretion of several metabolites. Various factors may lead to Fanconi syndrome, as it may be a genetic disease with primary or secondary etiologies, or may be acquired. In this study, we report a unique case of Fanconi syndrome with development of a relatively rare acute leukemia, a condition that has not been reported before. The case was an 8-year-old boy with familial occurrence of Fanconi syndrome, presenting with pallor, asthenia, recurrent infections, growth failure, and a variety of biochemical and hematological abnormalities. After physical examination, radiographic studies, and comprehensive laboratory analyses, Fanconi syndrome associated with bilineal acute leukemia, of myeloid and T-lymphoid lineages, was diagnosed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992150PMC
http://dx.doi.org/10.5812/ijp.3723DOI Listing

Publication Analysis

Top Keywords

fanconi syndrome
24
acute leukemia
12
bilineal acute
8
fanconi
6
syndrome
6
leukemia associated
4
associated fanconi
4
syndrome case
4
case report
4
report fanconi
4

Similar Publications

Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic lesion. We know very well the kinetics of induction and repair of different types of DNA damage in different organisms and cell lines.

View Article and Find Full Text PDF

Autoimmune Tubulopathies.

J Am Soc Nephrol

January 2025

Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France.

The renal tubule and collecting duct express a large number of proteins, all having putative immunoreactive motives. Therefore, all can be the target of pathogenic autoantibodies. However, autoimmune tubulopathies seem to be rare and we hypothesize that they are underdiagnosed.

View Article and Find Full Text PDF

Unlabelled: Inherited Bone Marrow Failure syndromes account for approximately 25% of cases of aplastic anemia in pediatric patients. Next-generation sequencing (NGS) technologies have allowed the diagnosis of an increasing number of hereditary causes of bone marrow failure.

Objective: To determine the diagnostic yield and clinical concordance of NGS in the diagnosis of a cohort of pediatric patients with bone marrow failure.

View Article and Find Full Text PDF

Management of Dysglycemia in a Pregnancy Complicated by Fanconi-Bickel Syndrome.

AACE Clin Case Rep

July 2024

Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

Background/objective: Fanconi-Bickel Syndrome (FBS) is an inherited disorder of glucose metabolism resulting from functional loss of glucose transporter 2 characterized by fasting hypoglycemia oscillating with postprandial hyperglycemia. Dysglycemia treatment strategies during FBS pregnancy have not been reported, and insulin therapy carries significant risk due to fasting hypoglycemia in FBS. We report for the first time: (1) glycemic profiles obtained via continuous glucose monitoring (CGM), (2) CGM-guided strategies for cornstarch and nutritional therapy for fasting hypoglycemia and postprandial hyperglycemia, respectively, and (3) placental glucose transporter 2 isoform expression in a pregnant individual with FBS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!