Normal aging is related to a decline in specific cognitive processes, in particular in executive functions and memory. In recent years a growing number of studies have focused on changes in brain functional connectivity related to cognitive aging. A common finding is the decreased connectivity within multiple resting state networks, including the default mode network (DMN) and the salience network. In this study, we measured resting state activity using fMRI and explored whether cognitive decline is related to altered functional connectivity. To this end we used a machine learning approach to classify young and old participants from functional connectivity data. The originality of the approach consists in the prediction of the performance and age of the subjects based on functional connectivity by using a machine learning approach. Our findings showed that the connectivity profile between specific networks predicts both the age of the subjects and their cognitive abilities. In particular, we report that the connectivity profiles between the salience and visual networks, and the salience and the anterior part of the DMN, were the features that best predicted the age. Moreover, independently of the age of the subject, connectivity between the salience network and various specific networks (i.e., visual, frontal) predicted episodic memory skills either based on a standard assessment or on an autobiographical memory task, and short-term memory binding. Finally, the connectivity between the salience and the frontal networks predicted inhibition and updating performance, but this link was no longer significant after removing the effect of age. Our findings confirm the crucial role of episodic memory and executive functions in cognitive aging and suggest a pivotal role of the salience network in neural reorganization in aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003020 | PMC |
http://dx.doi.org/10.3389/fnagi.2016.00204 | DOI Listing |
Background: Mental health remains among the top 10 leading causes of disease burden globally, and there is a significant treatment gap due to limited resources, stigma, limited accessibility, and low perceived need for treatment. Problem Management Plus, a World Health Organization-endorsed brief psychological intervention for mental health disorders, has been shown to be effective and cost-effective in various countries globally but faces implementation challenges, such as quality control in training, supervision, and delivery. While digital technologies to foster mental health care have the potential to close treatment gaps and address the issues of quality control, their development requires context-specific, interdisciplinary, and participatory approaches to enhance impact and acceptance.
View Article and Find Full Text PDFBrain Imaging Behav
January 2025
Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China.
Bipolar disorder (BD) is a complex psychiatric condition marked by significant mood fluctuations that deeply affect quality of life. Understanding the neural mechanisms underlying BD is critical for improving diagnostic accuracy and developing more effective treatments. This study utilized resting-state functional magnetic resonance imaging (rs-fMRI) to investigate functional connectivity within the ventral and dorsal attention networks in 52 patients with BD and 51 healthy controls.
View Article and Find Full Text PDFMol Biol Rep
January 2025
College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, PR China.
Background: Feline diarrhea is a common digestive tract disease in clinical practice, with watery feces as the main clinical manifestation. There are numerous pathogenic factors causing feline diarrhea, among which viral infections are prevalent, and feline panleukopenia virus (FPV) is the most common pathogen. In recent years, a variety of novel viruses have been detected in the intestines of cats with diarrhea.
View Article and Find Full Text PDFBrain Topogr
January 2025
Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain-computer interfaces (BCIs). Despite significant advances, accurately classifying imagined speech signals remains challenging due to their complex and non-stationary nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!